Inelastic Interaction and Non-Traveling-Wave Effects for Two Multi-Dimensional Burgers Models from Fluid Dynamics and Astrophysics with Symbolic Computation

Tao Xua, Chun-Yi Zhangb,c, Juan Lia, Hai-Qiang Zhanga, Li-Li Lia, and Bo Tiana

a School of Science, Beijing University of Posts and Telecommunications, P. O. Box 122, Beijing 100876, China
b Meteorology Center of Air Force Command Post, Changchun 130051, China
c Ministry-of-Education Key Laboratory of Fluid Mechanics and National Laboratory for Computational Fluid Dynamics, Beijing University of Aeronautics and Astronautics, Beijing 100083, China

Reprint requests to T. X.; E-mail: xutodd@ss.buaa.edu.cn

Z. Naturforsch. 61a, 652 – 660 (2006); received October 6, 2006

Describing the surface perturbations of a shallow viscous fluid, cosmic-ray-modified shock structures and electromagnetic waves in a saturated ferrite, the (2+1)- and (3+1)-dimensional Burgers equations are investigated in this paper. In view of the higher space dimensionality, the transformations from such two models to a (1+1)-dimensional Burgers equation are constructed with symbolic computation. Via the obtained transformations, three families of multi-dimensional \textit{N}-shock-wave-like solutions are specially presented, which recover some previously published solutions. The inelastically interacting properties and some non-traveling-wave effects of shock waves are discussed through the figures for several sample solutions. Additionally, possible applications for those solutions and effects in some fields are also pointed out.

\textit{Key words:} Multi-Dimensional Burgers Equations; Inelastic Interaction; Non-Traveling-Wave Effects; \textit{N}-Shock-Wave-Like Solutions; Symbolic Computation.