Theoretical Explanation of the EPR Parameters of Tetragonal Ti$^{3+}$ Centers in ZnSe and CdS$_{0.75}$Se$_{0.25}$ Semiconductors

Xiao-Xuan Wua,c,d, Wen-Ling Fengb,c, Qing Zhouc, and Wen-Chen Zhengc,d

a Department of Physics, Civil Aviation Flying Institute of China, Guanghan 618307, P. R. China
b Department of Applied Physics, Chongqing Institute of Technology, Chongqing 400050, P. R. China
c Department of Material Science, Sichuan University, Chengdu 610064, P. R. China
d International Centre for Materials Physics, Chinese Academy of Sciences, Shenyang 110016, P. R. China

Reprint requests to X.-X. W.; E-mail: wxxdd@163.com

Z. Naturforsch. 61a, 505 – 508 (2006); received June 2, 2006

The electron paramagnetic resonance (EPR) parameters (g factors g_\parallel, g_\perp and hyperfine structure constants A_\parallel, A_\perp) of the tetragonal Ti$^{3+}$ centers in ZnSe and CdS$_{0.75}$Se$_{0.25}$ semiconductors are calculated from high-order perturbation formulas based on the cluster approach. In these formulas, both the contribution from the spin-orbit coupling parameters of the central 3d0 ion and that of ligands are considered. The calculated results show reasonable agreement with the observed values. The defect structures of the tetragonal Ti$^{3+}$ centers in both semiconductors caused by the static Jahn-Teller effect are suggested.

Key words: Crystal- and Ligand-Field Theory; Electron Paramagnetic Resonance; Local Lattice Distortion; II-VI Semiconductors; Ti$^{3+}$.