A Study of Perturbations of the $A^1\Sigma_u^+$ State of Na$_2$

Rami Haj Mohamada, Khaled Husseina, and Omar Babakyb

a Lebanese University, Faculty of Sciences III, P.O. Box 826, Tripoli, Lebanon
b Sana’a University, Faculty of Science, Department of Physics, P.O. Box 13783, Sana’a, Republic of Yemen

Reprint requests to R. H. M.; E-mail: hrami73@hotmail.com

Z. Naturforsch. 61a, 349 – 356 (2006); received April 13, 2006

High resolution Fourier spectrometry techniques have been used to study the $A^1\Sigma_u^+$ state, which is perturbed by the $b^3\Pi_u$ state of the Na$_2$ molecule. This study was achieved by means of exciting the $B^1\Pi_u$ state from the $X^1\Sigma_g^+$ ground state by 4880 Å and 4965 Å lines of an Ar$^+$ laser. The excitation is followed by collisional transfer energy produced between $B^1\Pi_u$ and $(2^1\Sigma_g^+)$ states, which led to the population of the vibrational levels of the $(2^1\Sigma_g^+)$ state v. The analysis of the collision-induced system $(2^1\Sigma_g^+ - A^1\Sigma_u^+)$ enabled us to study, in detail, the perturbations of 11 vibrational levels from $v = 0$ to $v = 10$ of the $A^1\Sigma_u^+$ state.

Key words: Perturbations; Vibrational Levels; Molecular Constants; Excited State $A^1\Sigma_u^+$.