Evaluation of the Structure of Amorphous Tungsten Oxide $\text{W}_{28}\text{O}_{72}$ by the Combination of Electron-, X-Ray- and Neutron-Diffraction (Three-Beam Experiment)

Jürgen Ankelea, Joachim Mayerb, Peter Lamparterc, and Siegfried Steebc

a Alcatel SEL AG, Lorenzstraße 10, D-70435 Stuttgart, Germany
b Rheinisch-Westfälische Technische Hochschule Aachen, Gemeinschaftslabor für Elektronenmikroskopie, Ahornstraße 55, D-52074 Aachen, Germany
c Max-Planck-Institut für Metallforschung, Heisenbergstraße 3, D-70569 Stuttgart, Germany

Reprint requests to Dr. P. L.; Fax: +49 (0)711 689-3312; E-mail: Lamparter@mf.mpg.de

Z. Naturforsch. 61a, 189 – 196 (2006); received December 20, 2005

From the combination of quantitative electron-diffraction data with X-ray- and neutron-diffraction data (so-called three-beam experiment) the partial structure factors and pair correlation functions of amorphous sputter deposited $\text{W}_{28}\text{O}_{72}$ were determined. On the basis of the experimental atomic distances and coordination numbers, and by comparison with crystalline WO_3, a structural model was developed, which consists of twisted WO_6 octahedra. Reverse Monte Carlo simulation in accordance with the experimental data was performed to verify the results.

Key words: Amorphous Tungsten Oxide; Diffraction; RMC Simulation.