Determination of Force Constants of Planar XY_3 and Tetrahedral XY_4
Molecules by the GF Matrix Method

Vesile G"uc"lu and Fatih Ucun
Department of Physics, Faculty of Arts and Sciences, Suleyman Demirel University, Isparta, Turkey
Reprint requests to Dr. F. U.; Fax: +90-246-2371106; E-mail: fucun@fef.sdu.edu.tr

Z. Naturforsch. 60a, 183 – 186 (2005); received November 2, 2004

The force constants of the internal coordinates of planar XY_3 and tetrahedral XY_4 molecules were calculated using the GF matrix method. The matrix solutions were carried out by means of a computer program built relative to the Newton-Raphson method, and the calculations were listed in tables. For tetrahedral XY_4 molecules having the same Y atom it was found that the force constants decrease with the increasing mass of the X atom, and this was attributed to the slowing of the molecule with increasing mass of the centre X atom.

Key words: GF Matrix Method; Force Constants; XY_3 Molecules; XY_4 Molecules.

1. Introduction

The normal vibration theory of molecules by the GF matrix method has been given by many authors [1 – 4], and some authors have calculated the force constants of octahedral MX$_6$ molecules [5 – 6]. In our previous study we have calculated the force constants of non-linear XY_2 molecules by this method [7].

In this present work, the force constants of planar XY_3 and tetrahedral XY_4 molecules were calculated by the GF matrix method. The matrix solutions were obtained by means of a computer program based on the Newton-Raphson method, and the exchanges of force constants with the mass of centre atom X for tetrahedral XY_4 molecules having the same Y atom were examined and commented.

2. Theory and Calculation

Planar XY_3 and tetrahedral XY_4 molecules have four normal modes of vibration as shown in Figs. 1a and 1b. They have the symmetry D_{3h} and T_d, respectively. The symmetry species of the vibrations are also given in the figure. These molecules have been described in terms of seven force constants in the internal coordinates. f_r denotes the bond stretch force constant, f_{rr} the interaction force constant between two Δr, $f_{\alpha\alpha}$ the interaction force constant between Δr and $\Delta\alpha$ having a common bond, $f_{\alpha\alpha}'$ the interaction force constant between Δr and $\Delta\alpha$ having no common bond, f_{θ} the bending force constant, $f_{\theta\theta}$ the interaction force constant between two $\Delta\alpha$ having no common bond, and $f_{\alpha\alpha}$ the force constant for the out-of-plane mode. The changes of Δr, $\Delta\alpha$ and $\Delta\theta$ can be seen in Figs. 2a and 2b.

2.1. Planar XY_3 Molecule

The elements of the G and F matrix for the mode in species A'_1 are

$$G = \mu_y, \quad F = f_r + 2f_{rr},$$

for the mode in species A''_2 are

$$G = \frac{9}{4r^2}(\mu_y + 3\mu_x), \quad F = r^2f_{\theta},$$

and for the ones in species E' are

$$G_{11} = \mu_y + \frac{3}{2}\mu_x,$$

$$G_{12} = \frac{3}{2r}\mu_x,$$

$$G_{22} = \frac{3}{2r^2}(2\mu_y + 3\mu_x),$$

$$F_{11} = f_r - f_{rr},$$

$$F_{12} = r(f_{\alpha\alpha}' - f_{\alpha\alpha}),$$

$$F_{22} = r^2(f_{\alpha} - f_{\alpha\alpha}).$$

0932-0784 / 05 / 0300–0183 06.00 © 2005 Verlag der Zeitschrift für Naturforschung, Tübingen · http://znaturforsch.com
Determination of Force Constants of Planar XY3 and Tetrahedral XY4 Molecules

Fig. 1. Normal modes of vibration of a) planar XY3 molecules, and b) tetrahedral XY4 molecules.

Fig. 2. The changes Δr_i, $\Delta \alpha_i$ and $\Delta \theta$ of a) a planar XY3 molecule, and b) a tetrahedral XY4 molecule.

2.2. Tetrahedral XY4 Molecule

The elements of the G and F matrix for the mode in species A_1 are

$$G = \mu_y, \quad F = f_r + 3f_{rr},$$

for the mode in species E are

$$G = \frac{3}{r^2}\mu_y, \quad F = r^2(f_a - 2f_{aa} + f_{aa'}),$$

and for the ones in species F_2 are

$$G_{11} = \mu_y + \frac{4}{3}\mu_x,$$

$$G_{12} = -\frac{8}{3r}\mu_x,$$

$$G_{22} = \frac{1}{r^3}\left(\frac{16}{3}\mu_x + 2\mu_y\right),$$

$$F_{11} = f_r - f_{rr},$$

$$F_{12} = \sqrt{2}r(f_{aa} - f_{aa'}),$$

$$F_{22} = r^2(f_a - f_{aa'}).$$

The secular equation of the GF matrix is given by

$$|\text{GF} - E\lambda| = 0$$

[3–4]. μ_x and μ_y are the reciprocals of masses of X and Y atoms.
where E is the diagonal-unit matrix and the λ’s are the eigenvalues of the matrix. The values of λ_i depend on the vibration frequencies by

$$\lambda_i = 4\pi^2 c^2 \nu^2_i.$$ \hfill (10)

After forming of the GF matrix in (9), the solution of the matrix was carried out using a computer program based on the Newton-Raphson method [8], taking the vibration frequencies and the bonding distances into account. We calculated the force constants as $f_r = 6.99956$ and $f_{\alpha} = 3.59016$ for planar BF$_3$ and BCl$_3$ molecules, respectively, and as $f_r = 2.75837$ for the tetrahedral SiH$_4$ molecule. These values are very close to the values given in [4] for the same molecules. After this agreement, we found the force constants for planar XY$_3$ and tetrahedral XY$_4$ molecules, and the results of these calculations are given in Tables 1 and 2, respectively. The values are suitable in error limits, also depend on the values taking from [3, 9]. This suitableness can be confirmed by comparing the values of f_r and f_{α} of some molecules with the ones obtained by neglecting the interaction constants in [4] for some molecules. As doing this, we found $f_r = 8.82512$, $f_{\alpha} = 0.39671$ for BF$_3$, and $f_r = 4.63310$, $f_{\alpha} = 0.17078$ for BCl$_3$ molecules. These values of f_r are absolutely same and the values of f_{α} are very close to the ones in [4] for the same molecule.

3. Discussion

Figure 3 shows the changes of the force constants of tetrahedral XY$_4$ molecules having the same Y atom with the mass of the X atom. As seen from the figure,

<table>
<thead>
<tr>
<th>Molecule</th>
<th>$r(A)$</th>
<th>f_r</th>
<th>f_{α}</th>
<th>f_{α}'</th>
<th>f_{α}''</th>
<th>f_{α}'''</th>
<th>f_{α}''''</th>
</tr>
</thead>
<tbody>
<tr>
<td>BrF$_3$</td>
<td>1.313</td>
<td>6.99956</td>
<td>0.122378</td>
<td>0.016308</td>
<td>0.38288</td>
<td>-0.38260</td>
<td>-0.00144</td>
</tr>
<tr>
<td>BCl$_3$</td>
<td>1.742</td>
<td>3.59016</td>
<td>0.52147</td>
<td>0.015300</td>
<td>0.17040</td>
<td>-0.03061</td>
<td>-0.08520</td>
</tr>
<tr>
<td>Cl$_3$</td>
<td>1.742</td>
<td>3.41753</td>
<td>0.60779</td>
<td>0.016420</td>
<td>0.17005</td>
<td>-0.03284</td>
<td>-0.08502</td>
</tr>
<tr>
<td>BF$_3$</td>
<td>1.893</td>
<td>2.84083</td>
<td>0.39859</td>
<td>0.014620</td>
<td>0.14186</td>
<td>-0.02924</td>
<td>-0.07093</td>
</tr>
<tr>
<td>BBr$_3$</td>
<td>1.893</td>
<td>2.68744</td>
<td>0.47528</td>
<td>0.015800</td>
<td>0.14328</td>
<td>-0.03161</td>
<td>-0.07164</td>
</tr>
<tr>
<td>BiF$_3$</td>
<td>2.118</td>
<td>2.18985</td>
<td>0.25444</td>
<td>0.014020</td>
<td>0.09441</td>
<td>-0.02804</td>
<td>-0.04720</td>
</tr>
<tr>
<td>Bi$_3$</td>
<td>2.118</td>
<td>2.06937</td>
<td>0.31468</td>
<td>0.015120</td>
<td>0.09451</td>
<td>-0.03023</td>
<td>-0.04725</td>
</tr>
<tr>
<td>SO$_3$</td>
<td>1.472</td>
<td>4.84244</td>
<td>2.96294</td>
<td>0.042900</td>
<td>2.28169</td>
<td>-0.08581</td>
<td>-1.14085</td>
</tr>
</tbody>
</table>

Table 1. Bond lengths r [9] and force constants f of planar XY$_3$ molecules. Force constants are in units of mdyn/A.
the force constants decrease with increasing mass of the X atom. These changes are also seen for planar XY\textsubscript{3} molecules from Table 1. As seen from the table, the force constants are lower for the molecules consisting of 11B atom as X atom than the ones consisting of 10B atom for XY\textsubscript{3} molecules having the same Y atom. These were attributed to the slowing of the molecule with the increasing mass of the X atom. Because the more condensed phase has the lower frequency and force constants [7, 10] we think the molecule mobilises more slowly with the increasing mass of centre atom X like taking it to a more condensed phase.

Fig. 3. The changes of the bond stretch force constants of tetrahedral XY\textsubscript{4} molecules having the same Y atom with the mass of X atom. 1u = 1.6598 \times 10^{-24} \text{ kg}.