Study on the Second Order Optical Properties of
N-(2,4-Dichloro)-salicylaldimine

Aslı Karakaş a, Hüseyin Ünver b, Ayhan Elmali c, and Ingrid Svoboda d

a Selçuk University, Faculty of Arts and Sciences, Department of Physics, TR-42049 Campus, Konya, Turkey
b Ankara University, Faculty of Sciences, Department of Physics, TR-06100 Tandoğan, Ankara, Turkey
c Ankara University, Faculty of Engineering, Department of Engineering Physics, TR-06100 Tandoğan, Ankara, Turkey
d Institute for Material Science, Darmstadt University of Technology, Petersenstraße 23, D-64287 Darmstadt, Germany

Reprint requests to Prof. A. E.; E-mail: elmali@eng.ankara.edu.tr

Z. Naturforsch. 60a, 376 – 382 (2005); received February 7, 2005

N-(2,4-Dichloro)-salicylaldimine was synthesized, characterized by elemental analysis, FT-IR, and UV-visible spectroscopy, and its crystal structure was determined. The title compound is almost planar and contains short intramolecular O-H...N hydrogen bonds [O1-N1 2.601(1) Å]. It remains transparent in the visible region and has solvatochromic behavior in the UV region in the range 198 – 349 nm, implying non-zero microscopic first hyperpolarizability. The ab-initio quantum mechanical calculations (finite field second-order Möller Plesset perturbation theory) of the studied compound have been carried out to compute the electric dipole moment (µ) and the first hyperpolarizability (β) values. The ab-initio results also show that this ligand might have microscopic nonlinear optical behavior with non-zero values.

Key words: Nonlinear Optics; First Hyperpolarizability; UV-visible Spectroscopy; Crystal Structure; Ab-initio Calculation.