Investigations of the g Factors of Fe$^+$ in MgO and CaO

Shao-Yi Wua,b and Hui-Ning Dongb,c

a Department of Applied Physics, University of Electronic Science & Technology of China, Chengdu 610054, P. R. China
b International Centre for Materials Physics, Chinese Academy of Sciences, Shenyang 110016, P. R. China
c College of Electronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, P. R. China

Reprint requests to S.-Y. W.; E-mail: shaoyi-wu@163.com

Z. Naturforsch. 60a, 366 – 368 (2005); received January 25, 2005

The g factors of Fe$^+$ in MgO and CaO are theoretically investigated by the perturbation formula of the g factor of a 3d7 ion in cubic octahedral symmetry based on the cluster approach. By considering the partial quenching of the spin-orbit coupling interaction and the effective Landé factor due to the dynamic Jahn-Teller effect (DJTE), the experimental g factors of the studied systems are reasonably interpreted. It can be suggested that the small g factors of the Fe$^+$ centers in MgO and CaO can be likely attributed to the DJTE, rather than the covalency effect within the scheme of the static crystal-field model.

Key words: Electron Paramagnetic Resonance; Crystal- and Ligand-field Theory; Fe$^+$; MgO; CaO.