Theoretical Study of the Spin Hamiltonian Parameters of Vanadium Ions
\(V^{2+} \) in \(\text{CsMgX}_3 \) (X = Cl, Br, I)

Xiu-Ying Gao\(^a\), Shao-Yi Wu\(^{a,b}\), Wang-He Wei\(^a\), and Wei-Zi Yan\(^a\)

\(^a\) Department of Applied Physics, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
\(^b\) International Center for Materials Physics, Chinese Academy of Sciences, Shenyang 110016, P. R. China

Reprint requests to S.-Y. W.; E-mail: shaoyi_wu@163.com

Z. Naturforsch. 60a, 145 – 148 (2005); received January 10, 2005

The spin Hamiltonian \(g \) factors and the hyperfine structure constants for \(V^{2+} \) in \(\text{CsMgX}_3 \) (X = Cl, Br, I) are theoretically studied by using the perturbation formulas of these parameters for a 3d\(^3\) ion in octahedral symmetry, based on the cluster approach. In such formulas, the contributions from the s-orbitals of the ligands were usually neglected. Here they are taken into account. The theoretical results (particularly the \(g \) factor for \(\text{CsMgI}_3 \)) show a significant improvement compared with those in absence of the ligand s-orbital contributions in the previous studies.

Key words: Electron Paramagnetic Resonance; Crystal- and Ligand-field Theory; \(V^{2+} \); \(\text{CsMgX}_3 \) (X = Cl, Br, I).