On the π-Electron Content of Bonds and Rings in Benzenoid Hydrocarbons

Ivan Gutman, Tetsuo Morikawa, and Susumu Narita

Faculty of Science, University of Kragujevac, P.O. Box 60, 34000 Kragujevac, Serbia and Montenegro
a Department of Chemistry, Joetsu University of Education, Joetsu 943-8512, Japan
b Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Japan
Reprint requests to Prof. I. G.; Fax: +381-34-335040; E-mail: gutman@knez.uis.kg.ac.yu

Z. Naturforsch. 59a, 295 – 298 (2004); received January 8, 2004

The Pauling bond order can be viewed as a measure of the π-electron content of the respective carbon-carbon bond. In benzenoid hydrocarbons its values lie between 0 (in the case of essential single bonds) and 1 (in the case of essential double bonds). If the benzenoid molecule does not possess essential single and double bonds, then the Pauling bond orders are greater than 0 and less than 1, but may assume values arbitrarily close to 0 and 1. The π-electron content of a ring is equal to the sum of the π-electron contents of the carbon-carbon bonds forming this ring. We show that in benzenoid hydrocarbons the π-electron content of any (six-membered) ring lies between 0 and 5.5. If the molecule does not possess essential single and double bonds, then the π-electron content of any ring is greater than 0 and less than 5.5, but may assume values arbitrarily close to 0 and 5.5.

Key words: Pauling Bond Order; Benzenoid Hydrocarbons; π-Electron Content (of a Carbon-Carbon Bond); π-Electron Content (of a Ring).

Introduction

Molecular-topology-based considerations have a long tradition in organic chemistry [1 – 3] and have proven to be particularly suitable and efficient in the case of benzenoid hydrocarbons [4 – 6]. Kekulé structures and their counts play an outstanding role in the theory of benzenoid hydrocarbons (for details see the book [5], the review [7] and elsewhere [8 – 10]).

In order to rationalize the variations in the carbon-carbon bond lengths in polycyclic aromatic compounds, Pauling, Brockway, and Beach [11] considered the quantities \(P_{rs} \) (nowadays known under the name “Pauling bond orders”), equal to the ratio of the number \(K_{rs} \) of Kekulé structures in which the carbon atoms \(r \) and \(s \) are connected by a double bond, and the total number \(K \) of Kekulé structures. This very simple and easily calculable “bond order” enables a surprisingly accurate prediction of interatomic distances, as demonstrated by numerous examples [12 – 17].

Another way to interpret \(P_{rs} \) would be to consider it as a measure of the π-electron content of the bond \(rs \). More precisely, if the π-electrons of the benzenoid molecule are viewed as being distributed among the carbon-carbon bonds, then the π-electron content of the bond \(rs \) would be \(2P_{rs} \).

Bearing this latter interpretation in mind, we could conceive the π-electron content of a ring \(R \) by adding the π-electron contents of the carbon-carbon bonds forming this ring. If the bond \(rs \) belongs solely to \(R \), then it contributes to the π-electron content of \(R \) by \(2P_{rs} \). If, however, this bond is shared by two rings, say \(R \) and \(R' \), then its contribution to the π-electron content of \(R \) is \(P_{rs} \) and to the π-electron content of \(R' \) also \(P_{rs} \). Thus, the π-electron content of the ring \(R \) of a polycyclic conjugated hydrocarbon \(H \) is computed by means of the expression

\[
EC = EC(R) = EC(R \mid H) = 2 \sum_s P_{rs} + \sum_{rs} P_{rs} \tag{1}
\]

with \(\sum_s \) and \(\sum_{rs} \) indicating summation over bonds belonging solely to \(R \), and shared by \(R \) and another ring of \(H \), respectively.

Whereas the Pauling-bond-order concept was put forward in the 1930s [11] and fully elaborated in the 1970s [12, 13], the closely related π-electron-ring-content was conceived only quite recently [18, 19].
I. Gutman et al. · On the π-Electron Content of Bonds and Rings in Benzenoid Hydrocarbons

Fig. 1. Benzenoid hydrocarbons possessing essential single (2,2)-bonds (1a, 1b, and 1c) and essential double (2,2)-bonds (2a, 2b, and 2c). These bonds are indicated by arrows. By shading are indicated the domains in which delocalization occurs, i.e., in which the Pauling bond orders differ from 0 and 1.

The aim of the present paper is to determine the values which $EC(R)$ may assume in the case of benzenoid hydrocarbons, and to reveal the structure of those benzenoids in which $EC(R)$ is extremal [20]. For these polycyclic conjugated systems R always stands for a six-membered cycle (a hexagon).

Our main results are the following two theorems.

Theorem 1. If H is a Kekuléan benzenoid hydrocarbon, and R is one of its rings, then $0 \leq EC(R) \leq 5.5$. The $π$-electron content of R may be equal to 0, and may be equal to 5.5.

Theorem 2. If H is a Kekuléan benzenoid hydrocarbon without essential single and double bonds, and R is one of its rings, then $0 < EC(R) < 5.5$. The $π$-electron content of R may be arbitrarily close to 0, and may be arbitrarily close to 5.5.

In order to prove the above bounds for EC we need some preparation. In particular, we need to find lower and upper bounds for the Pauling bond order.

Bounds for the Pauling Bond Order

In what follows we shall be especially interested in carbon-carbon bonds of benzenoid hydrocarbons in which both involved carbon atoms have exactly two carbon-atom neighbors. In line with the terminology of the book [5] we refer to these as (2,2)-bonds.

Each benzenoid system possesses at least six (2,2)-bonds. If a bond rs is single in all Kekulé structures, then it is referred to as an essential single bond. For it $P_{rs} = 0$. If a bond rs is double in all Kekulé structures, then it is referred to as an essential double bond. For it $P_{rs} = 1$. Evidently, 0 is the minimum and 1 the maximum possible value of the Pauling bond order.

There exist benzenoid hydrocarbons in which some bonds are essential single and some essential double [21–23]. Furthermore, such essential bonds may be (2,2)-bonds. In Fig. 1 are depicted examples of such benzenoid systems.

From the examples given in Fig. 1 we arrive at an obvious conclusion [16]:

Theorem 3. If rs is a bond of a Kekuléan benzenoid hydrocarbon, then $0 \leq P_{rs} \leq 1$. The Pauling bond order of rs may be equal to 0, and may be equal to 1. The Pauling bond order of a (2,2)-bond may be equal to 0, and may be equal to 1.

However, we may say a bit more:

Theorem 4. If rs is a bond of a Kekuléan benzenoid hydrocarbon without essential single and double bonds, then $0 < P_{rs} < 1$. The Pauling bond order of rs may be arbitrarily close to 0, and may be arbitrarily close to 1. The Pauling bond order of a (2,2)-bond may be arbitrarily close to 0, and may be arbitrarily close to 1.

In order to verify Theorem 4 it is sufficient to find a homologous series of benzenoid hydrocarbons for which the Pauling bond orders of (2,2)-bonds tend to zero and unity. An elementary example of this kind is depicted in Figure 2.
I. Gutman et al. · On the \(\pi \)-Electron Content of Bonds and Rings in Benzenoid Hydrocarbons

Fig. 3. The general form of a ring with zero \(\pi \)-electron content (3a) and an example of a benzenoid system containing it (3b). For details see Fig. 1 and text.

Proving Theorem 1

The \(\pi \)-electron content of a ring \(R \) of a benzenoid hydrocarbon \(H \) is zero if and only if in all Kekulé structures of \(H \) the arrangement of double bonds is as indicated in diagram 3a in Figure 3. This is achieved if three benzenoid fragments possessing \((2,2)\)-bonds with zero Pauling bond order (cf. Fig. 1) are connected to \(R \) via their \((2,2)\)-bonds. An example is the system 3b in Fig. 3, constructed from three fragments 1b.

In order that a ring \(R \) in a benzenoid hydrocarbon \(H \) has as large as possible \(\pi \)-electron content it must share its \(\pi \)-electrons with as few as possible other rings. Thus a ring with maximum \(EC \)-value must have exactly one neighboring ring. Then the Kekulé structures of \(H \) may be of the type 4a, 4b, and 4c, as shown in Figure 4. Each Kekulé structure of the type 4a contributes by 6 to the \(\pi \)-electron content of \(R \). The analogous contributions of the Kekulé structures of the type 4b and 4c are 5 and 4, respectively.

Let there be \(K_a, K_b, \) and \(K_c \) Kekulé structures of \(H \) of the form 4a, 4b, and 4c, respectively. Then,

\[
EC(R|H) = \frac{6K_a + 5K_b + 4K_c}{K_a + K_b + K_c}
\]

It is easily seen that \(K_a = K_b \). Therefore

\[
EC(R|H) = \frac{11K_a + 4K_c}{2K_a + K_c} = 5.5 - \frac{1.5K_c}{2K_a + K_c}.
\]

We thus see that \(EC \leq 5.5 \). Equality \(EC = 5.5 \) will occur if there are no Kekulé structures of the type 4c, i.e. if \(K_c = 0 \). This, in turn, will happen if \(H \) is obtained by connecting to the ring \(R \) a benzenoid fragment possessing a \((2,2)\)-bond with unit Pauling bond order (cf. Fig. 1) via this \((2,2)\)-bond. An example is the system 4d in Fig. 4, obtained from the fragment 2b.

By this we completed the demonstration of the validity of Theorem 1.

Proving Theorem 2

From the considerations in the previous section we see that if either \(EC(R|H) = 0 \) or \(EC(R|H) = 5.5 \), then the benzenoid system \(H \) necessarily possesses essential single and double bonds. We have also demonstrated that \(EC(R|H) \) cannot exceed 5.5. Thus, if es-
ential single and double bonds are not permitted, it must be $0 < EC(R) < 5.5$.

The fact that $EC(R)$ may become arbitrarily close to either 0 or 5.5 is verified by means of the examples shown in Figure 5. Using standard methods for Kekulé structure enumeration [5, 7–10], it is shown that for the benzenoid molecules of the type 5a (symmetric starphenes), $K = (a + 1)^3 + 1$, $K_{rs} = 1$, and $K_{st} = (a + 1)^2$, cf. Figure 5. Consequently,

$$P_{rs} = \frac{1}{(a + 1)^3 + 1}; \quad P_{st} = \frac{(a + 1)^2}{(a + 1)^3 + 1}.$$

Bearing in mind equation (1) and the symmetry of the molecule 5a, we get

$$EC(R) = 6P_{rs} + 3P_{st} = 6 + 3(a + 1)^2 \frac{3a^2 + 6a + 9}{(a + 1)^3 + 1} = \frac{3a^2 + 6a + 9}{a^3 + 3a^2 + 3a + 2},$$

implying that $EC(R)$ tends to zero as the parameter a tends to infinity.

An analogous calculation for the benzenoid system 5b yields $K = 2(a + 1)^2 + 1$, $K_{ts} = K_{uv} = K_{wr} = (a + 1)^2$, and $K_{st} = K_{av} = (a + 1)^2 + 1$. Consequently,

$$P_{ts} = P_{tu} = P_{av} = P_{wr} = \frac{(a + 1)^2}{2(a + 1)^2 + 1};$$

$$P_{st} = P_{uv} = \frac{(a + 1)^2 + 1}{2(a + 1)^2 + 1}$$

which, in view of (1) results in

$$EC(R) = 2(P_{ts} + P_{st} + P_{tu} + P_{av} + P_{wr}) + P_{wt} = \frac{11(a + 1)^2 + 4}{2(a + 1)^2 + 1} = \frac{5.5}{2(a + 1)^2 + 1} - \frac{1.5}{2(a + 1)^2 + 1}.$$

The fact that for $a \to \infty$ the π-electron content of the rings R in 5b tends to 5.5 (from below) is now evident.