Studies of the Zero-field Splitting for Mn$^{2+}$ in 6H-RbMgF$_3$ Crystal

Wen-Chen Zhenga,c, Yang Meia, Xiao-Xuan Wua,b,c, and Qing Zhoua

a Department of Material Science, Sichuan University, Chengdu 610064, P. R. China.
b Department of Physics, Civil Aviation Flying Institute of China, Guanghan 618307, P. R. China.
c International Centre for Materials Physics, Chinese Academy of Sciences, Shenyang 110016, P. R. China.

Reprint requests to W.-C. Z.; E-mail: zhengwc1@163.com

Z. Naturforsch. 59a, 961 – 963 (2004); received August 30, 2004

By using the spin-orbit coupling mechanism and the empirical superposition model, the zero-field splittings D of Mn$^{2+}$ ions on both Mg$^{2+}$ sites in hexagonal 6H-RbMgF$_3$ crystal are calculated from the structural data of both Mg$^{2+}$ sites. The calculated results of both methods confirm the suggestion that Mn$^{2+}$ in 6H-RbMgF$_3$ occupies the Mg$^{2+}$ (I) site (which has D$_{3d}$ site symmetry) and the zero-field splitting D of 6H-RbMgF$_3$: Mn$^{2+}$ is explained reasonably.

Key words: Electron Paramagnetic Resonance; Crystal-Field Theory; Superposition Model; Mn$^{2+}$; 6H-RbMgF$_3$.