Theoretical Studies on the Gyromagnetic Factors for Nd$^{3+}$ in Scheelites-Type ABO$_4$ Compounds

Shao-Yi Wua,b and Hui-Ning Dongb,c

a Department of Applied Physics, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
b International Centre for Materials Physics, Chinese Academy of Sciences, Shenyang 110016, P. R. China
c College of Electronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, P. R. China

Reprint requests to S.-Y. W.; E-mail: shaoyi.wu@163.com.

Z. Naturforsch. 59a, 947 – 951 (2004); received September 24, 2004

The gyromagnetic factors for Nd$^{3+}$ in scheelite-type ABO$_4$ compounds (A = Cd, Ca, Pb, Ba; B = Mo, W) are theoretically studied by the perturbation formulas of the anisotropic g factors g_{\parallel} and g_{\perp} for a 4f3 ion in tetragonal symmetry. In these formulas, the contributions to the g factors due to the second-order perturbation terms and the admixtures of various energy levels are taken into account. The relevant crystal-field parameters are determined by the superposition model and the local geometrical relationship of the A$^{2+}$ sites occupied by the impurity Nd$^{3+}$. The obtained g factors agree reasonably with the observed values. The discrepancies between theory and experiment are discussed.

Key words: EPR; Crystal-fields and Spin Hamiltonian; Nd$^{3+}$; Scheelites-type ABO$_4$ Compounds (A = Cd, Ca, Pb, Ba; B = Mo, W).