On the EPR Parameters of Divalent Cobalt in ZnX (X = S, Se, Te) and CdTe

Shao-Yi Wua,b and Hui-Ning Dongb,c

a Department of Applied Physics, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
b International Centre for Materials Physics, Chinese Academy of Sciences, Shenyang 110016, P. R. China
c College of Electronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, P. R. China

Reprint requests to S.-Y. W.; E-mail: wushaoyi@netease.com

Z. Naturforsch. 59a, 938 – 942 (2004); received August 9, 2004

The electron paramagnetic resonance (EPR) parameters g and the hyperfine structure constants A of Co$^{2+}$ in ZnX (X = S, Se, Te) and CdTe are studied, using the perturbation formulas of the EPR parameters for a 3d7 ion in tetrahedra based on two mechanism models. In these formulas, both the contributions from the conventional crystal-field (CF) mechanism and those from the charge-transfer (CT) mechanism are taken into account. According to the investigations, the sign of the g-shift Δg_{CT} from the CT mechanism is the same as Δg_{CF} from the CF mechanism, whereas the contributions to the A value from the CF and CT mechanisms have opposite signs. Particularly, the contributions to the EPR parameters from the CT mechanism increase rapidly with increase of the spin-orbit coupling coefficient of the ligand and the covalency effect of the systems, i.e. $S^{2-} < Se^{2-} < Te^{2-}$.

Key words: Crystal-fields and Spin Hamiltonians; EPR; Co$^{2+}$; ZnX (X = S, Se, Te); CdTe.