EPR Parameters and Local Atom-position Parameters for Co$^{2+}$ Ions in CdS and CdSe Semiconductors

Wen-Chen Zhenga,c,d, Xiao-Xuan Wua,b,c, Yang Meia, and Jian Zic,d

a Department of Material Science, Sichuan University, Chengdu 610064, P. R. China
b Department of Physics, Civil Aviation Flying Institute of China, Guanghan 618307, P. R. China
c International Centre for Materials Physics, Chinese Academy of Sciences, Shenyang 110016, P. R. China
d Surface Physics Laboratory (National Key Lab), Fudan University, Shanghai 200433, P. R. China

Reprint requests to W.-C. Z.; E-mail: zhengwc1@163.com

Z. Naturforsch. 59a, 783 – 786 (2004); received July 9, 2004

The EPR parameters (zero-field splitting D and g factors g_{\parallel}, g_{\perp}) of Co$^{2+}$ ions in CdS and CdSe semiconductors are calculated from the high-order perturbation formulas based on the cluster approach for a 3d^7 ion in trigonal symmetry. These formulas include the contribution to the EPR parameters from both the spin-orbit coupling parameter of the 3d^7 ion and that of the ligand. From the calculations, the local atom-position parameters u (which are different from the corresponding values in the host crystals) for the Co$^{2+}$ impurity centers in both semiconductors are estimated. The results are discussed.

Key words: Electron Paramagnetic Resonance; Local Atom-Position Parameter; Crystal- and Ligand- Field Theory; Co$^{2+}$; CdS; CdSe.