Zero-field Splitting and Local Lattice Distortions for Fe$^{3+}$ Ions in Some I$_b$-III$_b$-VI$_2$ Semiconductors

Wen-Chen Zhenga,b,d, Hui-Ning Donga,c, Sheng Tanga, and Jian Zib,d

a Department of Material Science, Sichuan University, Chengdu 610064, P.R. China
b International Centre for Materials Physics, Chinese Academy of Sciences, Shenyang 110016, P.R. China
c Institute of Solid State Physics, Sichuan Normal University, Chengdu 610066, P.R. China
d Surface Physics Laboratory (National Key Lab), Fudan University, Shanghai 200433, P.R. China

Reprint requests to Prof. W.-C. Z.; Fax: +86-28-85416050

Z. Naturforsch. 59a, 100 – 102 (2004); received April 17, 2003

The EPR zero-field splitting D for Fe$^{3+}$ ions in some I$_b$-III$_b$-VI$_2$ semiconductors is calculated with the superposition model. The calculated D values, when using the local rotation angles τ(Fe$^{3+}$) for Fe$^{3+}$ in CuGaS$_2$ and AgGaS$_2$ crystals, are consistent with the observed values, whereas for Fe$^{3+}$ in CuAlS$_2$ crystal they are not. The calculated results are discussed. The local lattice distortions except the local rotation angles τ for Fe$^{3+}$ in CuAlS$_2$ are suggested.

Key words: Electron Paramagnetic Resonance; Local Lattice Distortion; Superposition Model; Fe$^{3+}$; CuMS$_2$(M = Al, Ga, In); AgGaS$_2$.