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It is well known that the leading digit in tables of statistical and physical data is not evenly dis-
tributed among the digits 1 to 9. Benford (who collected a large number of data) assumed that they
follow a logarithmic law, commonly known as Benford’s Law, although it was proposed earlier by
Newcomb. We suggest, however, that the probability of the first digit being a 1, 2, ... depends on the
particular distribution function of the data. For example, the size distribution of objects which grow
exponentially is found to follow the Newcomb-Benford law. On the other hand, as the experimental
data discussed in this paper show, the function governing the probability of the first digit of the weight
of fragments obtained from crushing a stone deviates substantially from the Newcomb-Benford Law.
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In most numbers one has to deal with in everyday
life, the first significant digit is much more often a 1
than a 9 [1]*,[2]. In case of street addresses, atomic
weights, page numbers and paragraphs of law books,
the reason is simply the fact that practically all num-
bering starts with one. There are eleven numbers be-
tween one and 20 with a leading 1. If the count is ex-
tended further on, one will find that each new decade
starts with numbers contributing ten times more first
1’s than the previous decade. Wherever the counting
is stopped, the starting numbers of the highest decade
with its many first 1’s will always contribute to statis-
tics. That’s why averaging over many numberings pro-
duces many more first 1’s than any other digit.

* From his publication: As natural numbers occur in nature,
they are to be considered as the ratios of quantities. We must
select two numbers and inquire what is the probability that
the first significant digit of their ratio is n. ... Let us suppose
the numbers to be arranged according to the characteristics
of their logarithms of the form c+s, ¢ +¢ ... (cand ¢’ being
integers). The significant figures of the ratio will be indepen-
dent of the integers ¢, ¢ ..., since changing the integers will
only change the decimal point. ... We have a series of num-
bers represented by a distribution of exponents s, < ... which
may be arranged around a circle. Finally, the fractions will
approach to an equal distribution around the circle. We thus
reach the conclusion:

The law of probability of the occurrence of numbers is such
that all mantissae of their logarithms are equally probable.

There are other reasons for the higher probability
of having a 1 for a first digit than a 9. Newcomb [1]
assumed that, for natural numbers, the mantissae of
their logarithms are equally distributed. From this he
derived his first digit law, giving the probability for the
first digitxtobe 1...9as

W = log ~ @

It can be shown that the size distribution of an object or
entity which grows exponentially follows this function,
the Newcomb-Benford law, exactly. Examples of such
objects are cultures of bacteria, or to a good approx-
imation the mass of trees during their initial growth
period, and also, incomes and taxes. These all remain
at a small size for a long period. As they grow, they
spend less time within a particular size interval. If sam-
ples are taken from an ensemble of objects which have
started to grow at different times, the majority is in the
small size stage and hence values obtained correspond
to small numbers.

For simplicity, let us first consider tree like ob-
jects, with a mass X = 1 when they are planted. In
addition, let us assume that they are planted at regu-
lar time intervals (with frequency f), the first one at
t =0, the second att = 1 and so on and that they ex-
hibit exponential growth. After some time, the com-
plete size distribution will extend over exactly two
decades (Fig. 1), i.e, the oldest tree exhibits mass
X = 100 and the youngest has just been planted,
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Fig. 1. Mass X of trees as a function of t when planted at
different times tn. The function shown is X (t) = €*2303t AJl
starting values are X(t,) = 1. The goal is to find the size dis-
tribution at tx = 20.

X=1.

With the growth function X (t) = e* and the number
of trees n = f - t, as a function of time, the fraction of
trees found within the mass interval dX at time t is

dn f-dt f1 f1
dX_a~ealdt_ae31_aX_D(X)' @
D(X) is the probability density function which is ~
X~Lin this particular case and gives the probability of
X being found within the mass interval [X,X + dX).
Integration yields the number of masses within the in-
terval [X1,X2)

X2
n[X1,X2) = /gidx — g[InXZ—InX1]. @3)

X1

This result is identical to the Newcomb-Benford law.
In this particular case, the probability for the first digit
to be a “1” is (log2 — log1) = log2, corresponding to
the length of time the objects remain within the size
interval [1,2) or [10,20), respectively.

The probability distribution of the first digits is not
altered at all when changing the units (e.g., Ib to kg),
as long as the measuring system is linear, nor when the
objects start to grow at a size X # 1. For each complete
decade, the statistical weight of the first digits will fol-
low this particular distribution, (1).

In general, the same number of objects will be found
within all size intervals that are evenly spaced on a
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logarithmic scale. This applies to any decade, too.
Therefore, considering many consecutive decades sep-
arately, the statistical weight of the first digit exhibits
a saw tooth function. Newcomb has investigated the
probability distribution of the second digit as well.
Zero occurs 30% more frequently than 9. (For the third
digit, there is still a difference of about 4%.)

Things are similar when entities are divided. Divi-
sion of any finite number by two corresponds to sub-
traction of log2 on a logarithmic scale. On this scale,
the range betweeen the numbers 1 and 2 comprises
more than 30% of the range of a complete decade. As a
consequence, consecutive division by two (or any num-
ber # 0) leads to a series of numbers where the prob-
ability of the first digit can be approximated by (1).
This can be verified by starting with a randomly cho-
sen number.

The probability of the first digit being a 1 increases
beyond the Newcomb-Benford law, when the size dis-
tribution of the objects follows the function

c

D(X)=

as it is often the case with fractals. In the following, X
means the mass of a sample.

As an example, let (4) describe the distribution of
fragments obatained from crushing a stone. To start
with, only the decade [1, 10) is considered. Further, the
samples are arranged in groups z=1,...,9, where the
weights of all samples belonging to one group exhibit
the corresponding leading digit, x=1,...,9. The sta-
tistical weight W(z) of the first digit being x=1...9
is given by the integral of the size distribution function
D(X) within the limits of the interval [x,x+ 1):

(P > 1,cbeing a constant), (4)

x+1
W(z) =P1- / X~Pdx = % [(x+1)tP —x=P]]
X

(forx=1,2,...,9). (5)

When the sum over all samples is taken as 100%, P1
can be eleminated, leading to the expression

100
10-P) —1

For other decades, say [0.01,0.1) or [100,1000), the
distribution of the first digits is the same, although the
number of objects within each of the decades is differ-
ent for P > 1. (In case of the Newcomb distribution,
P=1).

W(z) = [(x+ 1P -xt"P]. ()
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First digit 1 2 3 4 5 6 7 8
Sample

WeilRer Jura 31159 1339 591 354 233 157 118 106 72
42309 1868 797 461 308 195 141 121 98
1523 g 1867 810 457 328 226 145 114 97
36349 238 105 73 39 36 22 14 19
z 5312 2303 1345 908 614 426 355 286
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First digit of the weight of 3029 pieces in grams

Fig. 2. Probability of the first digits 1...9 from the weight of
3029 pieces obtained by crushing a sample of Weiler Jura.
The flater curve corresponds to the distribution proposed by
Newcomb. The large probability of the first 1’s and 2’s is a
consequence of P > 1 in the mass distribution function (4).
P = 1.555(13) was obtained from fitting (6) to the data points
indicated by squares. The Newcomb distribution corresponds
to P =1 (2). Chi? is 0.136 when the power law is fitted and
30.3 for the Newcomb function.

To apply (6) to a realistic distribution, a piece of
mineral (Weiller Jura, Upper Jurassic period, from the
Schwaebische Alb; weight 3115 g) was crushed re-
peatedly with a press. All pieces between 0.01 and
636.8 g were weighed. The mass of the weighed pieces
amounted to 97.43% of the total mass. From 3029 mea-
surements covering nearly five orders of magnitude,
the distribution function W(z) of the first digits was fit-
ted. This is shown in Figs. 2 and 3 (linear and logarith-
mic plot, respectively), along with a fit to (6). The re-
sult [P = 1.555(13)] shows that the statistical weight of
the first 1’s is considerably higher than expected from
the law proposed by Newcomb (and verified by Ben-
ford (2) on over 20000 data points). The significance
level of the fit is above 0.95. Chi? amounts to 0.136.
For comparison, the Newcomb distribution is plotted in
grey. According to Newcomb, the 1 should occur ~ 6.6
times more frequently than the 9, whereas, in the ac-

9 Number of  Power law Table 1. Distribution of First
fragments  exponent P Digits.
59 3029 1.555(13)
86 4075 1.618(13)
77 4121 1.597(16)
12 558 1.493(31)
234 11783  Pav 1.587(13)
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Fig. 3. Probability of first digits 1...9 from pieces of Weiler
Jura. Plot of logW(2z) vs. log x shows the deviation from
Newcomb’s law. While, due to Newcomb, the 1 should occur
6.6 times as frequent as the 9, the corresponding probability
factor is approximately 20 in the actual case.

tual case, the corresponding probability factor is 19.03
(from the fitted function) and 22.69 (experiment).

From a total of four samples of Weiler Jura from
the Schwaebische Alb (ranging from 363 g to 4230 g in
weight) an average power law exponent P = 1.587(13)
was derived (Table 1). One sample of Schwarzer Jura
from the Holzmaden area achieved P = 1.579(24),
while the result for a sample of green schist is P =
1.772(9). However, no obvious dependence on the size
of the sample was found so far.

To give an impression of the average distribution (or
number density) function of WeilRer Jura, the average P
values have been determined separately for each of the
five decades. For this purpose the numbers of all frag-
ments falling into the interval z= [10 mg, 20 mg) were
added, then for z= [20 mg,30 mg) and so on, up to
z=1[600 g,700 g). This is shown in Fig. 4 (kind of saw
tooth function). See also Table 2. Then, using (6), five
P values have been fitted for each of the decades and
from the nine values each. From these five parameters
distribution functions have been plotted and composed
to an over- all function. The semi logarithimic plot is
given in Figure 5.
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First digit 1 2 3 4 5 6 7 8

9 Number of Power law  Table 2. Total Number of

Decade fragments exponent P Fragments per z Interval and
[100 g, 1000 g) 6 4 2 1 0 3 0 0 0 16 1.342(226)
[10 g, 100 g) 39 9 9 6 3 2 1 5 0 74 1.860(126) per.Decade. Four Samples of
[1g,10g) 169 8 20 29 18 13 15 11 8 375  1602(59)  VVeilerJura.
[100 mg, 1000 mg) 923 368 216 134 115 63 59 44 31 1953  1.668(16)
[10mg,100 mg) 4181 1841 1089 739 478 345 280 226 195 9374  1.571(15)
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Fig. 4. Plot of the average probability function W(z) of four
samples of WeiBer Jura. The squares indicate the number of
fragments per z interval. Due to the logarithmic scale zero
values of W(z) in the two highest decades cannot be shown.

In conclusion, one can say that every distribution of
measured values has a unique distribution of the first
digits. In many cases, the 1 occurs more often as a first
decimal digit than the 9. In general, a non-uniform dis-
tribution among the digits 1 to 9 at the first significant
place is observed, when the values obtained from mea-
surement do not follow a uniform distribution on a lin-
ear scale.

As already discussed here, the size distribution of
objects which grow exponentially is identical to the
one which is derived from the Newcomb hypothesis.
An example where with this is not the case, is the
distribution of the weight of fragments obtained from
crushing a mineral. There, the probability of the occur-
rence of first digits is considerably different from the
Newcomb law in the sense that there is an abundance
of small fragments.

The question arises, why is the Newcomb law not
obeyed in this case? Or perhaps the question should be
put in the form of why should it?

In general, the exponent of the distribution function
depends on the variable. When, in (4), the mass X of
the fragments is replaced by an expression proportional
r3 (r being their linear dimensions), P will be multi-

Fig. 5. Plot of the average distribution function of four sam-
ples of Weiler Jura. The sections correspond to the P values
which have been fitted separately. This provides some indi-
cation of a single slope distribution over nearly five decades.

plied by 3. With the density function and the P values
determined experimentally it is possible to estimate the
sum of all diameters of all fragments falling into a cer-
tain interval, say, one decade of mass. It turns out that a
chain formed in this way gets longer and longer when
the fragments get smaller. The sum of surfaces, how-
ever, stays nearly constant, therefore being the entity
which comes closest to Newcomb’s law.

In a crushing process, even when force is applied
continously in a press, fragmentation occurs in a step-
wise manner. The fragments surface is proportional
to the number of atoms which have to be separated
on cleavage. The number and the size distribution of
fragments is most probably a function of the dynamic
processes involved as soon as the stored energy is re-
leased.

With regard to power law distributions in nature,
there is literature on grain size distributions in soils
and sediments [3,4]. Attempts have been made to fit
the size distribution by two or three slope power law
functions. Similar results have been obtained for the
size distribution of asteroids [5] and from fragmenta-
tion by impact experiments, eg., by shooting a pro-
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jectile on a basalt target [6]. Examples of terrestrial,
lunar and interplanetary power law rock fragmentation
have been collected by Hartmann [7]. A power law ex-
ponent (or differential power law index) around 4 is
found for the frequency of meteor impact craters ver-
sus diameter on the Jupiter moon Ganymed (8). In ad-
dition, it should be mentioned that the average value of
P[= 1.587(13)] in the mass distribution function can
be compared with the exponent of a function resulting
from computer simulations of earthquakes [9]. There it
was found that the occurrence frequency of clusters of
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masses moved during an earthquake scales with cluster
size sas s 7, with a power law exponent T = 1.6.

Among all distributions occurring naturally, an
equal distribution among the digits 1 to 9 seems to be
rare. This would be the case if, in the first example,
the objects would not grow exponentially, but linearly.
One can even think of size distributions where the first
9’s are most frequent (growth function ~ tk 0 < k < 1).
Of course, there is no distribution of first digits at all as
soon as the distribution of values narrows down to a
very small range.
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