Theoretical Investigations of the Local Structure and the EPR Parameters of Mn$^{4+}$ in LiF:U:Mn Crystal

Shao-Yi Wua,b, Wang-He Weia, and Hui-Ning Dongb,c

a Department of Applied Physics, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
b International Centre for Materials Physics, Chinese Academy of Sciences, Shenyang 110016, P. R. China
c College of Electronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, P. R. China

Reprint requests to S.-Y. Wu; E-mail: wushaoyi@netease.com

Z. Naturforsch. 58a, 672 – 676 (2003); received September 10, 2003

The local structure and the EPR parameters (zero-field splitting D, g factors g_\parallel and g_\perp and hyperfine structure constants A_\parallel and A_\perp) of Mn$^{4+}$ in LiF:U:Mn crystal have theoretically been investigated by using the perturbation formulas of the EPR parameters for a 3d3 ion in trigonally distorted octahedra. In this trigonal Mn$^{4+}$ center, three U$^{6+}$ ions locate on (1,1,0), (1,0,1) and (0,1,1) sites, each surrounded by six O$^{2-}$ ions. Thus, the studied system is characterized as the Mn$^{4+}$ associated with one host F$^-$ triangle, one O$^{2-}$ triangle and an additional equivalent F$'$ triangle containing the three U$^{6+}$ ions, i.e. an [MnF$_3$O$_3$F$_3$]$^{8-}$ cluster. The central Mn$^{4+}$ impurity is found to shift towards the oxygen triangle along the C_3 (or [111]) axis by an amount ΔZ (\approx 0.29 Å) due to the strong electrostatic attraction between the Mn$^{4+}$ and the oxygen triangle (and also the additional equivalent F$'$ triangle), which increases the trigonal distortion of the Mn$^{4+}$ center considerably. The calculated EPR parameters based on the above displacement ΔZ agree reasonably with the observed values.

Key words: Defect Structure; Electron Paramagnetic Resonance (EPR); Crystal-field Theory; Mn$^{4+}$; LiF.