Investigation of Eu$^{3+}$ Site Occupancy in Cubic Y$_2$O$_3$ and Lu$_2$O$_3$ Nanocrystals

Giorgio Concas, Giorgio Spano, Marco Bettinellia, and Adolfo Speghinia

Dipartimento di Fisica, Università di Cagliari and Istituto Nazionale per la Fisica della Materia, S. P. Monserrato-Sestu km 0.700, I-09042 Monserrato (Cagliari), Italy

a Dipartimento Scientifico e Tecnologico, Università di Verona and INSTM, UdR Verona, Ca’ Vignal, Strada le Grazie 15, I-37134 Verona, Italy

Reprint requests to Dr. G.C.; Fax: +39070510171; E-mail: giorgio.concas@dsf.unica.it

Z. Naturforsch. 58a, 551–557 (2003); received July 24, 2003

The distribution of luminescent Eu$^{3+}$ ions in crystals with the cubic bixbyite-type structure is subject of debate. In this work, the actual occupancy of the two cation sites available for europium in yttria and lutetia nanocrystals with sizes of 10–20 nm has been evaluated by means of 151Eu Mössbauer spectroscopy. The spectral contribution of the ion at different crystalline sites has been resolved, allowing for the quadrupole splitting. The spectra of the nanocrystalline Y$_{1.8}$Eu$_{0.2}$O$_3$ and Lu$_{1.8}$Eu$_{0.2}$O$_3$ compounds have been analyzed in detail; the C$_{3i}$ and C$_2$ sites are occupied by the europium ion in a statistical way. The hyperfine parameters have been discussed in terms of symmetry and bonding. An increase of the covalence of the Eu-O bond has been found in the series of compounds Gd$_2$O$_3$, Eu$_2$O$_3$, Y$_2$O$_3$ and Lu$_2$O$_3$.

Key words: Europium; Oxides; Nanocrystals; Mössbauer Spectroscopy; Structural Properties.