Theoretical Investigations of the Electron Paramagnetic Resonance g Factors for the Trivalent Cerium Ion in LiYF$_4$ Crystal

Hui-Ning Donga,b and Shao-Yi Wub,c

a College of Electronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, P. R. China
b International Centre for Materials Physics, Chinese Academy of Sciences, Shenyang 110016, P. R. China
c Department of Applied Physics, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China

Reprint requests to H.-N. D.; E-mail: donghn@163.com

Z. Naturforsch. 58a, 507 – 510 (2003); received July 25, 2003

The perturbation equations of the EPR parameters g_\parallel and g_\perp for the lowest Kramers doublet of a $4f^1$ ion in tetragonal symmetry are established. In these equations, the contributions of the covalency effects, the admixture between $J = 7/2$ and $J = 5/2$ states and the second-order perturbation (which is not considered previously) are included. The crystal field parameters for the studied Ce$^{3+}$ center are calculated from the superposition model. Based on the above perturbation equations and related parameters, the EPR g factors for the Ce$^{3+}$ center in LiYF$_4$ crystals are reasonably explained. The results are discussed.

Key words: Crystal Field Theory; Electron Paramagnetic Resonance; Superposition Model; Ce$^{3+}$; LiYF$_4$.