Theoretical Studies of the EPR g Factors and the Hyperfine Structure Constants of Cr$^{3+}$ in MgS and SrS

Shao-Yi Wua, Xiu-Ying Gao, and Wei-Zi Yan

Department of Applied Physics, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
a International Centre for Materials Physics, Chinese Academy of Sciences, Shenyang 110016, P. R. China

Reprint requests to S.-Y. W. E-mail: wushaoyi@netease.com

Z. Naturforsch. 58a, 503 – 506 (2003); received July 9, 2003

The EPR g factors and the hyperfine structure constant A factors for Cr$^{3+}$ in MgS and SrS are theoretically studied by using the two-spin-orbit (S.O.)-coupling-coefficient formulas for a 3d3 ion in octahedra based on the cluster approach. In these formulas, both the contributions due to the S.O. coupling coefficient of the central 3d3 ion and that of ligands are taken into account. Based on these studies, the g and A factors of Cr$^{3+}$ in both MgS and SrS are satisfactorily explained. The results are discussed.

Key words: EPR; Crystal- and Ligand-fields; Cr$^{3+}$; MgS; SrS.