Estimation of the 79Br NQR Frequencies of Bromo-Containing Molecules Using \textit{ab initio} Calculations at Different Levels

Valentin P. Feshin and Dmitry B. Shlyapnikov

Institute of Technical Chemistry, Ural Branch of the Russian Academy of Sciences,
Perm, Russian Federation

Reprint requests to Prof. V. P. F.; Fax: 007-3422-126-237, E-mail: cheminst@mpm.ru

Z. Naturforsch. \textbf{58a}, 475 – 479 (2003); received May 9, 2003

\textit{Ab initio} calculations of bromo-containing molecules on the RHF, B3LYP and MP2 levels and $6-31G(d)$, $6-31+G(d)$, $6-311G(d)$ and $631+G(d)$ basis sets were executed. They were used to estimate the 79Br NQR frequencies of these molecules. A satisfactory agreement between experimental and estimated NQR frequencies is obtained for the sum of populations of $13p$- and $14p$-components of the Br atom valence p-orbitals obtained from the RHF, B3LYP and MP2 calculations (particularly from RHF calculations) with the split valence basis sets $6-311G(d)$ and $6-311+G(d)$. The agreement between the experimental and estimated NQR frequencies is worse for the populations of the $9p$-components of the Br atom valence p-orbitals obtained from these calculations with the basis sets $6-31G(d)$ and $6-31+G(d)$. An analogous conformity was not obtained using the populations of other components of the Br atom valence p-orbitals or their total populations obtained from all above-mentioned calculations.

\textit{Key words:} \textit{ab initio} Calculations; Valence p-orbital Populations; 79Br NQR Frequency; Bromo-containing Molecules.