The Studies of Geometrical Microstructure of Tetragonal Co2+-V\textsubscript{O} Centers in KNbO\textsubscript{3} and KTaO\textsubscript{3} Crystals from EPR Data

Wen-Chen Zhenga,b and Shao-Yi Wua,b

a Department of Material Science, Sichuan University, Chengdu 610064, P. R. China
b International Centre for Materials Physics, Chinese Academy of Sciences, Shenyang 110016, P. R. China

Reprint requests to W.-C. Z.; E-mail: zhengwenchen@netease.com

Z. Naturforsch. \textbf{57 a}, 925–928 (2002); received July 7, 2002

From the perturbation formulas for the EPR g factors g_\parallel and g_\perp of a 3d7 ion in tetragonal octahedral crystal field based on a cluster approach, the geometrical microstructures of tetragonal Co2+-V\textsubscript{O} centers in KNbO\textsubscript{3} and KTaO\textsubscript{3} crystals are obtained by fitting the calculated g_\parallel and g_\perp to the observed values. It is found that the Co2+ ion in Co2+-V\textsubscript{O} centers is displaced away from the oxygen vacancy V\textsubscript{O} by 0.3 Å in KNbO\textsubscript{3} and by 0.29 Å in KTaO\textsubscript{3}. These results are comparable with those of Fe3+-V\textsubscript{O} centers in ABO\textsubscript{3} perovskite-type crystals obtained from both the shell-model simulations and the embedded-cluster calculations, and from theoretical studies of EPR data. The experimental values of g_\parallel and g_\perp for the tetragonal Co2+-V\textsubscript{O} centers in both crystals are also explained reasonably.

\textit{Key words:} Electron Paramagnetic Resonance (EPR); Crystal- and Ligand-Field Theory; Defect Structure; Co2+; KNbO\textsubscript{3}; KTaO\textsubscript{3}.