The Red-edge Effect in the Spectra of Fluorenone and 4-Hydroxyfluorenone Alcohol Solutions

M. Józefowicza, J. R. Heldta, and J. Heldta, b

a Institute of Experimental Physics, University of Gda nsk, PL 80-952 Gda nsk, Poland
b Institute of Physics, Pomeranian Pedagogical Academy, PL 76-200 S\l upsk, Poland

Reprint requests to Dr. J. H.; Fax: (048)(059)341-31-75, E-mail: fizjh@julia.univ.gda.pl

Z. Naturforsch. 57a, 787–796 (2002); received May 6, 2002

Photophysical parameters of fluorenone and 4-hydroxyfluorenone have been studied in various solvents using steady state and time-resolved spectroscopic measurements. The fluorescence spectrum of both molecules in hydrogen bonding solvents is inhomogeneously broadened and strongly red shifted in comparison to that determined in nonpolar and polar media. At 77 K the fluorescence spectra of the protic solvents are blue shifted (posses a changed intensity distribution) whereas in polar and nonpolar one they are red shifted. In H-bond solvents at 77 K the fluorescence spectra of both molecules show an excitation wavelength dependence – the red-edge effect. The observed changes of the spectra are confirmed by the results of fluorescence decay measurements. The obtained results are explained by taking into consideration the statistical distribution of the solute-solvent interaction energies and the correlations between the fluorescence rate k_f, solvent-cage relaxation rate τ_R^{-1} and the vibronic relaxation rate τ_V^{-1}.

Key words: Fluorenone; 4-Hydroxyfluorenone; Electronic Spectra; Red-edge Effect.