Theoretical Studies of the EPR g Factors and Optical Spectra for Tetragonal Ce$^{3+}$ Centers in CaF$_2$ and SrF$_2$ Crystals

Hui-Ning Donga,b, Shao-Yi Wub,c, and Wen-Chen Zhengb,c

a Institute of Solid State Physics, Sichuan Normal University, Chengdu 610066, China
b Department of Material Science, Sichuan University, Chengdu 610064, P. R. China
c International Centre for Materials Physics, Chinese Academy of Sciences, Shenyang 110016, P. R. China

Reprint requests to W.-C. Z.; E-mail: zhengwenchen@netease.com

Z. Naturforsch. 57 a, 753–756 (2002); received April 2, 2002

By using the irreducible tensor operator technique, the complete energy matrix including the admixture between $J = 7/2$ and $J = 5/2$ manifolds and the covalency reduction effect for 4f ion in tetragonal symmetry is established. Based on this, the electron paramagnetic resonance (EPR) g factors for the tetragonal Ce$^{3+}$ centers in CaF$_2$ and SrF$_2$ crystals are reasonably explained and some levels of the $J = 5/2$ manifold for these centres are estimated. The results are discussed.

Key words: Crystal- and Ligand-field Theory; Electron Paramagnetic Resonance (EPR); Optical Spectra; Ce$^{3+}$; CaF$_2$; SrF$_2$.