Second Order Lax Pairs of Nonlinear Partial Differential Equations with Schwarzian Forms

Sen-yue Loua,b,c, Xiao-yan Tanga,b, Qing-Ping Liub,d, and T. Fukuyamae,f

a Department of Physics, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
b Abdus Salam International Centre for Theoretical Physics, Trieste, Italy
c Department of Physics, Ningbo University, Ningbo 315211, P. R. China
d Beijing Graduate School, China University of Mining and Technology, Beijing 100083, P. R. China
e Department of Physics, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
f Department of Physics, University of Maryland, College Park, MD20742, U.S.A.

Reprint requests to Dr. S.-y. L.; E-mail: sylou@mail.sjtu.edu.cn

Z. Naturforsch. 57 a, 737–744 (2002); received February 26, 2002

In this paper we study the possible second order Lax operators for all possible (1+1)-dimensional models with Schwarzian forms. If the Schwarzian form of a (1+1)-dimensional model can be expressed by two known conformal invariants (invariant under the Möbius transformation), the model has a second order lax pair. The explicit Lax pairs for some (1+1)-dimensional are given. The conclusions are also extended to some (2+1)-dimensional equations.

Keywords: Lax Pairs; Schwarzian Forms; Möbius Transformation; Conformal Invariants.