The Nuclear Quadrupole Interaction of $^{187}\text{W}(\beta^-)^{187}\text{Re}$ in W(VI)-EDTA Complexes

Guida Suna, Weiqiao Liub, and Tilman Butz

Fakultät für Physik und Geowissenschaften, Universität Leipzig, Linnéstr. 5, 04103 Leipzig, Germany

a On leave from Beijing Institute of Petrochemical Technology, Qing Yuau Bei Lu 19#, Daxing County, 102600 Beijing, China

b On leave from Department of Petrochemical Engineering, Fushun Petroleum Institute, Fushun, Liaoning 113001, China

Reprint requests to Prof. T. B.; Fax: +49-341-97-32-748; E-mail: butz@physik.uni-leipzig.de

Z. Naturforsch. 57a, 620–622 (2002); received June 25, 2002

The nuclear quadrupole interaction of $^{187}\text{W}(\beta^-)^{187}\text{Re}$ in W(VI)-EDTA complexes at room temperature was determined by time differential perturbed angular correlations (TDPAC) to be $v_Q = 1270(8)$ MHz with an asymmetry parameter $\eta = 0.403(4)$. While the coordination geometry of the Mo(VI)-EDTA complex is known, there appears to be none for the W-analogue. The rather similar asymmetry parameters for the $^{187}\text{W}(\beta^-)^{187}\text{Re}$ in W(VI)-EDTA complex and for the $^{99}\text{Mo}(\beta^-)^{99}\text{Tc}$ in Mo(VI)-EDTA complex, determined previously, supports the idea that the coordination geometries in the Mo- and W-complexes are similar.

Key words: Nuclear Quadrupole Interactions; W-Complexes.