Mössbauer Spectroscopic Studies of \((\text{Me}_2\text{NH}_2)_2\text{SnX}_6\) (X = Cl or Br) and Their Related Complexes

Motomi Katada, Dilara Afroj, Takashi Yamauchi, and Satoshi Kawata

Graduate School of Science, Tokyo Metropolitan University,
Minami-ohsawa, Hachioji, Tokyo 192-0397, Japan

\(^{a}\) Graduate School of Science, Osaka University,
Machikaneyama, Toyonaka, Osaka 560-0043, Japan

Reprint requests to Prof. M. K.; E-mail: katada-motomi@c.metro-u.ac.jp

Z. Naturforsch. 57 \(^a\), 607–612 (2002); received April 9, 2002

The temperature dependence in the \(^{119}\text{Sn}\) Mössbauer spectral area for \((\text{CH}_3\text{NH}_2)_2\text{SnCl}_6\) was found to be almost linear, although a phase transition of the complex has been suggested by IR, \(^{35}\text{Cl}\) NQR and NMR studies, while an anomaly in the temperature dependence for \((\text{CH}_3\text{NH}_2)_2\text{SnBr}_6\) was found at \(\sim 235\) K, which is close to the phase transition temperature \(\sim 253\) K determined by \(^{89}\text{Br}\) NQR. These differences are attributable to molecular motion of the dimethylammonium ion in the complexes. The X-ray powder diffraction pattern of \((\text{CH}_3\text{NH}_2)_2\text{SnCl}_6\) did not change near the phase transition point, but that of \((\text{CH}_3\text{NH}_2)_2\text{SnBr}_6\) changed at 108 - 123 K and 233 - 253 K.

Key words: Mössbauer Spectroscopy; Phase Transition; SnX\(_6^{2-}\) Ion; Molecular Motion.