Quadrupole Moments of the ^{40}Ca Core Plus One Nucleon Nuclei ^{41}Sc and ^{41}Ca

Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan

a Wakasawan Energy Research Center, Hase-Tsuruga, Fukui 914-0192, Japan

b Institute of Scientific and Industrial Research, Osaka University, Osaka 567-0047, Japan

c Graduate School of Science, Hokkaido University, Sapporo, Hokkaido 060-0812, Japan

d CIAE, P.O.Box 275-50, Beijing 102413, Peoples Republic of China

Reprint requests to Prof. T. Minamisono; E-mail: minamiso@hep.sci.osaka-u.ac.jp

Z. Naturforsch. 57 a, 595–598 (2002); received January 18, 2002

The electric-field-gradient (EFG) and anisotropic chemical shift of $^{45}\text{Sc}(I^* = 7/2^-, \text{stable})$ in TiO$_2$ crystal were determined by detecting the FT-NMR of $^{45}\text{Sc}(0.5 \text{ atm}\% \text{ of Ti in TiO}_2)$ doped in TiO$_2$ crystal at a high field of 7.0 T and 9.4 T. Using the EFG, an old β-NQR spectrum of ^{41}Sc was reanalyzed to obtain $eQ^{(41}\text{Sc})/\hbar$ which was combined with the renewed $Q^{(45}\text{Sc}) = -(23.6 \pm 0.2) \text{ fm}^2$ to obtain $|Q^{(41}\text{Sc}; I^* = 7/2^-, T_{1/2} = 0.596 \text{ s})| = (15.6 \pm 0.3) \text{ fm}^2$. Also the atomic EFG in Ca was recalculated, using a finite-element multi configuration Hartree-Fock method to renew $Q^{(43}\text{Ca})$. Finally using the known hyperfine constants of ^{41}Ca, the $Q^{(41}\text{Ca})$ value has been renewed.

Keywords: Quadrupole Moments of Sc and Ca Isotopes; Electric Field Gradients; Ca and Sc Atoms; TiO$_2$.