Spin Manipulation by Use of Nuclear Quadrupole Interactions
– Quarks and Medium Effects in the Nucleus

K. Minamisono, K. Matsuta, T. Minamisono, T. Yamaguchi, T. Sumikama, T. Nagatomo, M. Ogura, T. Iwakoshi, M. Mihara, M. Fukuda, K. Koshigiria, and M. Moritab
Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan
aDepartment of Physics, Osaka Kyoiku University, Kashiwara, Osaka 582-8582, Japan
bDepartment of Physics, Josai International University, Togane, Chiba 283-8555, Japan
Reprint requests to Dr. K. Minamisono; E-mail: kei@vg.phys.sci.osaka-u.ac.jp

Z. Naturforsch. 57 a, 557–560 (2002); received January 18, 2002

The alignment correlation terms in the β-ray angular distributions from the purely spin aligned mirror pair $^{12}\text{B}(I_{1/2}^\pi = 1^+, T_{1/2} = 20.2 \text{ ms})$ and $^{12}\text{N}(I_{1/2}^\pi = 1^+, T_{1/2} = 11.0 \text{ ms})$ were precisely measured to place a new limit on the G-parity conservation law. For the creation of the alignment, the spin manipulation technique was applied, which utilized the nuclear quadrupole interactions. The G-parity violating induced tensor coefficient was determined to be $2M f_T/f_A = -0.15 \pm 0.12 \pm 0.05$ (theor.), which is consistent with the theoretical prediction based on QCD in which $2M f_T/f_A$ is proportional to the mass difference between up and down quarks which constitute the nucleon. Also determined the axial charge to be $y = 4.90 \pm 0.10$ (90\% CL). From the result, we have found that the nucleon mass inside the nucleus is reduced (16 \pm 4)\% relative to the free nucleon mass.

\textit{Key words: β-Ray Angular Distribution; Alignment Correlation Term; G Parity; Axial Charge; In-Medium Nucleon Mass Renormalization.}