Cu-NMR Study on Disordered Sr$_{14}$Cu$_{24}$O$_{41}$

S. Ohsugi, S. Matsumotoa, Y. Kitaokab, M. Matsudac, M. Ueharad, T. Nagatae, and J. Akimitsud

Department of Electrical Engineering and Electronics, College of Industrial Technology, Amagasaki, Hyogo 661-0047, Japan

a Tsukuba Magnet Laboratory (TML), National Research Institute for Metals (NRIM), Tsukuba, Ibaraki, 305-0003, Japan

b Department of Physical Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan

c Advanced Science Research Center, Japan Atomic Energy Research Institute, Tokai, Ibaraki 319-1195, Japan

d Department of Physics, Aoyama-Gakuin University, Chitosedai, Setagaya-ku, Tokyo 157-8572, Japan

e Department of Physics, Ochanomizu University, Otsuka 2-1-1, Bunkyo-ku, Tokyo 112-8610, Japan

Reprint requests to Dr. S. O.; Fax: +81 (6) 6431-7244, E-mail: ohsugi@cit.sangitan.ac.jp

Z. Naturforsch. 57a, 509–512 (2002); received May 25, 2002

The ladder-Cu NMR spectrum of a structural disordered single crystal Sr$_{14}$Cu$_{24}$O$_{41}$ (Sr14-B) under a magnetic field $H \sim 11$ T gradually splits into two spectra with Curie-like broadening as T decreases from $T_{SP} \sim 150$ K. Short-range (SR) staggered polarization (SP) on the ladder planes, originating from single-hole localization, occurs. The separation of the Sr14-B spectrum ΔH deviates from the Curie-like T dependence below 20 K. This assures that spontaneous moments appear below $T_N \sim 20$ K in $H \sim 11$ T.

Key words: Spin Ladder; Sr$_{14}$Cu$_{24}$O$_{41}$; Cu NMR; Field-induced Long-range Order.