Mixing Enthalpies of TbBr₃-MBr Liquid Mixtures

(M = Li, Na, K, Rb, Cs)

L. Rycerz and M. Gaune-Escarda

Institute of Inorganic Chemistry and Metallurgy of Rare Elements,
Wrocław University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wrocław, Poland
^a IUSTI - CNRS UMR 6595, Technopôle de Château Gombert,
⁵ rue Enrico Fermi, 13453 Marseille Cedex 13, France

Reprint requests to M. G.-E.; Fax: +33 (0)4 91 11 74 39; E-mail: mge@iusti.univ-mrs.fr

Z. Naturforsch. **56 a,** 859–864 (2001); received November 14, 2001

The molar enthalpies of mixing, $\Delta_{\text{mix}}H_{\text{m}}$ in the binary liquid systems TbBr₃-MBr (M = Li, Na, K, Rb, Cs) have been measured with a Calvet-type high-temperature microcalorimeter over the entire composition range with an accuracy of about 6%. Mixing of the two liquid components was achieved by using the "break-off ampoule" technique. All the investigated systems show negative enthalpies of mixing with a minimum value of approximately -1.25, -8.3, -17.0, -20.0 and -22.5 kJ mol⁻¹, for M = Li, Na, K, Rb and Cs, respectively. The mixing enthalpy in the TbBr₃-LiBr system is positive in the TbBr₃-rich region. For all the systems, the enthalpy minimum occurs at mole fraction $x_{\text{TbBr}_3} \approx 0.3$ - 0.4. The molar enthalpies of formation $\Delta_{\text{form}}H_{\text{m}}$ (3MBr, TbBr₃, 1) for M = Li, Na, K, Rb and Cs at 1113 K (arising from the reaction 3MBr₍₁₎ +TbBr₃, (1) = (3MBr, TbBr₃) (1)) are found to be -4.8, -31.3, -63.3, -70.3 and -81.2 kJ mol⁻¹, respectively. The least-squares coefficients A, B, C, D and E in the equation λ (kJ mol⁻¹) = $A + Bx + Cx^2 + Dx^3 + Ex^4$, where λ is an interaction parameter and $x = x_{\text{TbBr}_3}$, are also reported.

Key words: Terbium Bromide; Alkali Bromides; Mixing Enthalpy; Formation Enthalpy.