Studies of Zero-field Splitting and its Pressure and Stress Dependence for Ni^{2+} in $La_2Mg_3(NO_3)_{12} \cdot 24~H_2O$ Crystal

Wen-Chen Zheng^{a,b,c}, Shao-Yi Wu^{a,b,c}, and Hui-Ning Dong^a

^a Department of Material Science, Sichuan University, Chengdu 610064, P. R. China
 ^b International Centre for Materials Physics, Chinese Academy of Sciences,

Shenyang 110016, P. R. China
^c Key Laboratory for Radiation Physics and Technology of the Ministry of Education, P. R. China (in Sichuan University)

Reprint requests to W.-C. Z; E-mail: zhengwenchen@netease.com

Z. Naturforsch. **56 a,** 855–858 (2001); received September 5, 2001

By using the high-order perturbation formulas, the g factors g_{\parallel} and g_{\perp} , the zero-field splittings D and the pressure and uniaxial stress dependences of zero-field splitting are studied for N_1^{r+} ions in both M_2^{r+} sites of $La_2Mg_3(NO_3)_{12} \cdot 24 H_2O$ crystal. It is found that the local trigonal distortion angles β_i of the two N_1^{r+} centers are only slightly different from the corresponding host ones, but the local angular compressibilities under pressure and stress for both N_1^{r+} centers are quite different not only from the corresponding host ones, but also from each other.

Key words: La₂Mg₃(NO₃)₁₂ · 24 H₂O; Ni²⁺; EPR; Local Distortion; Local Compressibility; Crystal Field Theory.