Studies of Zero-field Splitting and its Pressure and Stress Dependence for Ni$^{2+}$ in La$_2$Mg$_3$(NO$_3$)$_{12}$·24H$_2$O Crystal

Wen-Chen Zhenga,b,c, Shao-Yi Wua,b,c, and Hui-Ning Donga

a Department of Material Science, Sichuan University, Chengdu 610064, P. R. China
b International Centre for Materials Physics, Chinese Academy of Sciences, Shenyang 110016, P. R. China
c Key Laboratory for Radiation Physics and Technology of the Ministry of Education, P. R. China (in Sichuan University)

Reprint requests to W.-C. Z; E-mail: zhengwenchen@netease.com

Z. Naturforsch. 56 a, 855–858 (2001); received September 5, 2001

By using the high-order perturbation formulas, the g factors g_\parallel and g_\perp, the zero-field splittings D and the pressure and uniaxial stress dependences of zero-field splitting are studied for Ni$^{2+}$ ions in both Mg$^{2+}$ sites of La$_2$Mg$_3$(NO$_3$)$_{12}$·24H$_2$O crystal. It is found that the local trigonal distortion angles β_i of the two Ni$^{2+}$ centers are only slightly different from the corresponding host ones, but the local angular compressibilities under pressure and stress for both Ni$^{2+}$ centers are quite different not only from the corresponding host ones, but also from each other.

Key words: La$_2$Mg$_3$(NO$_3$)$_{12}$·24H$_2$O; Ni$^{2+}$; EPR; Local Distortion; Local Compressibility; Crystal Field Theory.