Investigation of Structural Questions on Europium Compounds by Means of ¹⁵¹Eu Mössbauer Spectroscopy

Giorgio Concas, Francesco Congiu, Giorgio Spano, Marco Bettinelli^a, Adolfo Speghini^a, and Colin D. Flint^b

Dipartimento di Fisica, Università di Cagliari and Istituto Nazionale per la Fisica della Materia, S.P. Monserrato-Sestu km 0.700, I-09042 Monserrato (Cagliari), Italy

^a Dipartimento Scientifico e Tecnologico, Università di Verona and INSTM, UdR Verona, Strada le Grazie 15, I-37134 Verona, Italy

^b School of Biological and Chemical Sciences, Birkbeck College, University of London,

Reprint requests to Dr. G. C.; Fax: +39 070 510171; E-mail: giorgio.concas@dsf.unica.it

Z. Naturforsch. **56 a,** 789–793 (2001); received October 29, 2001

Gordon House, 29 Gordon Square, London WC1H OPP, U.K.

¹⁵¹Eu Mössbauer spectroscopy permits the determination of the symmetry of the site in which Eu is accommodated. It has been shown that the ¹⁵¹SmF₃ source can be considered a monochromatic source. This source was used to measure the line width of Eu^{3+} in a site with cubic symmetry, i. e. in a $Cs_2NaEuCl_6$ crystal. The isomer shift of commercial compounds used as standards (anhydrous EuF_3 and EuS) was also measured. In the case of $Cs_2NaEu(NO_2)_6$ hexanitritoelpasolite the trivalent europium ion is accommodated in a site with perfect cubic symmetry. In $Eu(PQ_3)_3$ crystalline metaphosphate, the rare earth is located in a site which appears to be distorted with respect to cubic symmetry; this site has no threefold or fourfold symmetry axis.

Key words: Elpasolites; Oxides; ¹⁵¹Eu Mössbauer Spectroscopy.