²⁷Al NMR Spectra of the RECl₃-AlCl₃ (RE = Y, La) Glasses and Melts

G. D. Zissi^{a,b} and C. Bessada^a

 ^a CNRS-CRMHT, 1D Av. De la Recherche Scientifique, 45071, Orléans Cedex 2, France
^b Institute of Chemical Engineering and High Temperature Chemical Processes (ICE/HT-FORTH), P.O. Box 1414, 26500 Rion, Greece

Reprint requests to Dr. C. B.; Fax: (0033) 238638103, e-mail: bessada@cnrs-orleans.fr

Z. Naturforsch. 56a, 697-701 (2001); received August 20, 2001

Paper presented at the Nato Advanced Study Institute, May 4–14, 2001 (Kas, Turkey)

²⁷Al NMR spectra of pure crystalline and molten AlCl₃ and of RECl₃–AlCl₃ (RE = Y, La) glass forming binary mixtures have been obtained. Compositions corresponding mainly to YCl₃/AlCl₃ = 1/3 and LaCl₃/AlCl₃ = 1/3.7 have been studied from the glassy and crystalline state up to the melt. The ²⁷Al spectra can be unambiguously assigned to four-coordinated Al-species, such as Al₂Cl₆, 'AlCl₄', and 'Al₂Cl₇'. The chemical shifts lie between 95 and 110 ppm, very well separated with the –1.6 ppm given by the 'AlCl₆' coordination in solid AlCl₃. From the temperature evolution of the ²⁷Al NMR spectra, a description for the dynamic behaviour of these systems is proposed.

Key words: ²⁷Al MAS NMR; RECl₃-AlCl₃; Glass Forming Melts; Structure; Dynamics.