Effect of Li Content on the DSC and Electrical Conductivity of $(Li_{1-x}K_x)_2SO_4$ Mixed Crystals

M. M. Ahmad* and M. A. Hefni a

Chemistry Department, Graduate School of Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8526, Japan

^a Physics Department, Faculty of Science, Assiut University, Assiut 71516, Egypt

Reprint requests to M. M. A.; E-mail: mmahmad@sci.hiroshima-u.ac.jp

Z. Naturforsch. **56a**, 677–680 (2001); May 28, 2001

Differential scanning calorimetry on $(\text{Li}_{1-x}K_x)_2\text{SO}_4$ mixed crystals, where x=0.01, 0.1, 0.3 and 0.5, revealed that, as the potassium content increases, the first high temperature phase of the intermediate LiKSO₄ phase at $T=432\,^{\circ}\text{C}$ grows and shifts to higher temperature, and a double-phase mixture consisting of LiKSO₄ and Li₂SO₄ exists for x<0.5. Ionic conductivity measurements on $(\text{Li}_{1-x}K_x)_2\text{SO}_4$ mixed crystals for $x\le0.5$ did show that the electrical conductivity increases as the Li₂SO₄ concentration increases, with an average activation energy of 0.9 eV. The enhanced electrical conductivity is primarily a result of the increase in the Li⁺ ion (charge carriers) concentration and/or the formation of a diffuse space charge layer at the interface between the two phases.

Key words: $(\text{Li}_{1-x}K_x)_2\text{SO}_4$ Crystals; DSC; Ionic Conductivity; Diffuse Space Charge Layer.