Isolated versus Condensed Anion Structure VII: X-ray Structure Analysis of 1,3-Propanediammonium Dibromodichlorocadmate(II), [H₃N(CH₂)₃NH₃]CdBr₂Cl₂, and Estimation of Stability of

Five-coordinated Halide Anions, MX_5^{3-} (M = Cd, Zn; X = Cl, Br) by Means of *Ab-initio* MO Calculations

Hideta Ishihara, Toshiya Okajima, Keizo Horiuchi^a, Ingrid Svoboda^b, and Hartmut Fuess^b

Faculty of Culture and Education, Saga University, Saga 840-8502, Japan ^a Faculty of Science, University of the Ryukyus, Okinawa 903-0213, Japan

^b Materials Science, University of Technology, Petersenstraße 23, D-64287 Darmstadt Reprint requests to Prof. H. I.; Fax: +81-952-28-8219; E-mail: isiharah@cc.saga-u.ac.jp

Z. Naturforsch. **56 a,** 641–646 (2000); received June 16, 2001

The coordination capability of Cl and Br in halogenocadmate(II) complexes is estimated by a solution of the structure of 1,3-propanediammonium dibromodichlorocadmate(II). The compound crystallizes as a layered anion structure with Cl bridges and Br terminals at 293 K: Imma, a = 741.56(7), b = 1869.5(5), and c = 771.55(8) pm, Z = 4. In order to explain the stronger tendency of halogenocadmate(II) complexes to form layered structures as compared to halogenozincate(II), *abinitio* calculations were performed. The stability of MX_5^{3-} (M = Cd, Zn; X = Cl, Br) is compared. Isolated ZnX_5^{3-} and $CdBr_5^{3-}$ ions are not stable. On the other hand a trigonal bipyramid $CdCl_3^{3-}$ ion is considered to be subtly stable in the crystal mainly due to Coulomb attractive interactions between the positively charged metal cation Cd^{2+} in a $CdCl_3^{3-}$ fragment and two Cl^{-} ions.

Key words: Crystal Structure; Halogenocadmate(II); Ab-initio MO Calculations.