Dielectric Permittivity and AC Conductivity Investigation for the New Model Lipid Bilayer Material: (CH₂)₁₀(NH₃)₂CdCl₄

Mohga F. Mostafa and Ahmed A. A. Youssef

Physics Department, Faculty of Science, University of Cairo, Giza, Egypt

Reprint requests to Dr. M. F. M.; E-mail: MOHGA@FRCU,EUN.EG

Z. Naturforsch. 56a, 568–578 (2001); received April 26, 2001

Differential thermal scanning of the new lipid-like bilayer material $(CH_2)_{10}(NH_3)_2CdCl_4$ showed two structural phase transitions, with onset temperatures at $T_2 = (359 \pm 2)$ K and $T_1 = (415\pm 1)$ K. Permittivity measurements were performed between room temperature and 450 K at 60–100 kHz. A step-like rise in permittivity at T_2 , associated with an order-disorder transition, is attributed to chain melting. Two anomalies at (413 ± 1) K and (430 ± 3) K, showing thermal hysteresis of ~8 and 10 K, respectively, indicate first order transitions which are associated with crystalline phase change.

The AC conductivity follows an Arrhenius-type relation with the activation energy ΔE varying with the frequency *f* according to the relation $\Delta E = \Delta E_0 [1 - \exp(f_0/f)]^{\alpha}$, where ΔE_0 , f_0 and α are 0.95 eV, 52 Hz and 0.11, respectively. The frequency dependent conductivity follows the power law $\sigma = \sigma_{dc} + B\omega^{\circ}$, with 0.3 < s < 1.5 for hopping conduction of hydrogen and/or chloride ions in the high temperature range, and localized hopping and/or orientational motion predominating temperatures lower than 413 K. Variations of B and s with temperature are discussed. PACS No. 76, 77

Key words: Phase Transitions; AC Dielectric Permittivity; Two-dimensional Materials; Lipid Bilayers.