Local Lattice Distortion near Co²⁺ in SrLaAlO₄ Crystal

Shao-Yi Wu^{a,b} and Wen-Chen Zheng^{a,b,c}

 ^a Department of Material Science, Sichuan University, Chengdu 610064, P. R. China
^b International Center for Materials Physics, Chinese Academy of Sciences, Shenyang 110015, P. R. China

^c Key Laboratory for Radiation Physics and Technology of Ministry of Education, P. R. China (in Sichuan University)

Reprint requests to S.-Y. W.; E-mail: wushaoyi.netease.com

Z. Naturforsch. 56 a, 557-560 (2001); received May 11, 2001

The local tetragonal distortion in the vicinity of substitutional $C\delta^+$ impurities in SrLaAlO₄ crystal is studied by fitting the calculated EPR parameters g_{\parallel} , g_{\perp} , A_{\parallel} and A_{\perp} to the observed values. The result shows that the local distortion is mainly due to the elongation of metal-ligand distance R_{\perp} perpendicular to the C_4 axis. This point is consistent with the expectation based on the consideration of ionic radius sum. This smaller tetragonal distortion of the oxygen octahedron surrounding the Co^{2+} impurity than that in the host crystal is supported by the result obtained in Cr^{3+} -doped SrLaAlO₄ crystal. – Pacs: 61.70Rj; 76.30Fc; 71.70Ch

Key words: Defect structure; Electronic Paramagnetic Resonance (EPR); Crystal Field Theory; SrLaAlO₄ Crystal; Co²⁺ Ion.