Motions of Ethylammonium Ions in Solid Ethylammonium Chloranilate Studied by 1H Nuclear Magnetic Resonance

Hiroyuki Ishida, Naoki Kumagae, and Setsuko Sato

Department of Chemistry, Faculty of Science, Okayama University, Okayama 700-8530, Japan
a Department of Chemistry, Faculty of Education, Gifu University, Gifu 501-1193, Japan

Reprint requests to Dr. H. I.; Fax +81-86-251-8497; E-mail: isidah@cc.okayama-u.ac.jp

Z. Naturforsch. 56a, 523–526 (2001); received April 30, 2001

The motions of the ethylammonium ion in solid ethylammonium chloranilate, $\text{C}_2\text{H}_5\text{NH}_3^+ \cdot \text{C}_6\text{H}_5\text{O}_4\text{Cl}_2^-$, are studied by 1H NMR second moment (M_2) and spin-lattice relaxation time (T_1) measurements. Reorientations of the CH$_3$ group about the C–C bond axis and the NH$_3^+$ group about C–N bond axis were observed and their motional parameters were evaluated. The internal rotational barriers of the CH$_3$ and NH$_3^+$ groups of an isolated C$_2$H$_5$NH$_3^+$ ion were estimated from ab initio molecular orbital calculations.

Key words: Nuclear Magnetic Resonance; Molecular Motion; Ethylammonium Ion; HF.