Defect Structures for Fe³⁺, Mn²⁺, and Ni³⁺ Impurities in Wuritzite GaN Crystals

Wen-Chen Zheng^{a,c}, Shao-Yi Wu^{a,c}, and Jian Zi^{b,c}

 ^a Department of Material Science, Sichuan University, Chengdu 610064, P. R. China
^b Surface Physics Laboratory (National Key Lab), Fudan University, Shanghai, 200433, P. R. China
^c International Centre for Materials Physics, Chinese Academy of Sciences, Shenyang 110015, P. R. China

Reprint requests to W.-C. Z; E-mail: zhengwenchen@netease.com

Z. Naturforsch. 56 a, 473-477 (2001); received April 20, 2001

Electron paramagnetic resonance (EPR) zero-field splittings D for Mr^{+} and Fe^{3+} in wurtzite GaN crystals are studied from high-order perturbation formulas based on the spin-orbit mechanism in both weak- and strong-field schemes. From these studies it can be seen that the Mr^{+} or Fe^{3+} impurity does not occupy the exact Ga^{3+} position, but is displaced by ΔR on the C_3 axis. The displacements are confirmed from a study of the superposition model, based on which a normal value of $\overline{b_2}(R_0)$ (≈ -0.34 (15) cm⁻¹) for the Fe^{3+} -N³⁻ combination is suggested. The EPR parameters D, g_{\parallel} and g_{\perp} for Ni³⁺ in GaN crystals are also studied. It is found that Ni³⁺ is almost not displaced. The impurity displacements in GaN are discussed by considering the valences and radii of these impurity ions and the replaced Ga^{3+} ion. – Pacs: 61.16Hn; 76.30Fc; 71.70Ch

Key words: Defect Structure; EPR; Crystal Field Theory; GaN; Fe³⁺; Mn²⁺; Ni³⁺.