The Energy of a Graph and its Size Dependence.
An Improved Monte Carlo Approach

Harald Fripertinger, Ivan Gutmana, Adalbert Kerberb, Axel Kohnertb, and Du\v{s}ica Vidovi\v{c}a

Institut f"ur Mathematik, Karl Franzens Universit"at Graz, Heinrichstraße 36, A-8010 Graz, Austria
a Faculty of Science, University of Kragujevac, P. O. Box 60, YU-34000 Kragujevac, Yugoslavia
b Lehrsuhl II f"ur Mathematik, Universit"at Bayreuth, D-95440 Bayreuth, Germany

Reprint requests to Prof. I. G.; Fax: +381 34 335040; E-mail: gutman@knez.uis.kg.ac.yu

Z. Naturforsch. 56 \textbf{a}, 342–346 (2001); received April 2, 2001

In an earlier work [Gutman et al., Chem. Phys. Lett. 297, 428 (1998)] the average energy $\langle E \rangle$ of graphs with \textit{n} vertices and \textit{m} edges was examined, in particular its dependence on \textit{n} and \textit{m}. The quantity $\langle E \rangle$ was computed from a set of randomly, but not uniformly, constructed (n, m)-graphs. We have now improved our method by constructing the (n, m)-graphs uniformly, so that every (n, m)-graph has equal probability to be generated. Differences between the old and new approaches are significant only in the case of graphs with a small number of edges.

Key words: Energy (of Graph); Total π-electron Energy; Random Graphs; Monte Carlo Methods.