Molecular Dynamics Simulation of the Internal Mobilities in Molten $(Dy_{1/3},K)$ Cl

Masahiko Matsumiya and Ryuzo Takagi^a

Matsumiya Computational Chemistry Institute, 6-14 higashi-numa, machiya-aza, chiaki-cho, ichinomiya-shi, Aichi 491-0813 Japan
^a Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8550 Japan

Reprint requests to Prof. M. M.; Fax: 81 586-76-6473; E-mail: molten@d9.dion.ne.jp

Z. Naturforsch. **56a**, 273–278 (2001); received January 22, 2001

Molecular dynamics simulations have been performed on molten (Dy_{1/3}, K)Cl at 1093 K in order to compare the calculated self-exchange velocity (SEV), self-diffusion coefficient (D) and electrical conductivity with the corresponding experimental results. It was found that SEV, v, and D of potassium decrease with increasing concentration of dysprosium, as expected from the internal mobility, b. The decrease of b_K , v_K , and D_K are ascribed to the tranquilization effect by Dy³⁺ which strongly interacts with Cl⁻. On the contrary, b_{Dy} , v_{Dy} , and D_{Dy} increase with increasing concentration of Dy³⁺. This may be attributed to the stronger association of Dy³⁺ with Cl⁻ due to the enhanced charge asymmetry of the two cations neighboring to the Cl⁻. In addition, the sequence of the calculated SEV's, D's and electrical conductivities for the various compositions were consistent with those of the referred experimental results.

Key words: Electrical Conductivity; Internal Cation Mobility; Molten DyCl₃-KCl; Molecular Dynamics Simulation; Self-exchange Velocity; Self-diffusion Coefficient.