Mössbauer Investigation of Eu$^{3+}$ Site Occupancy and Eu-O Covalency in Y$_2$O$_3$ and Gd$_2$O$_3$ Nanocrystals

G. Concas, C. Muntoni, G. Spano, M. Bettinellia, and A. Speghinia

Dipartimento di Fisica, Università di Cagliari and Istituto Nazionale per la Fisica della Materia, S.P. Monserrato-Sestu km 0.700, I-09042 Monserrato (Cagliari), Italy

a Dipartimento Scientifico e Tecnologico, Università di Verona, Ca’ Vignal, Strada le Grazie, I-37134 Verona, Italy

Reprint requests to Dr. G. C.; Fax: +39 070 510171; E-mail: giorgio.concas@dsf.unica.it

Z. Naturforsch. 56 a, 267–272 (2001); received November 11, 2000

Samples of nanocrystalline Y$_{1.8}$Eu$_{0.2}$O$_3$ and Gd$_{1.8}$Eu$_{0.2}$O$_3$ were examined by 151Eu Mössbauer spectroscopy. The degree of covalency of the Eu-O bond has been studied. The spectrum of the cubic Y$_{1.8}$Eu$_{0.2}$O$_3$ sample has been resolved into 2 contributions due to europium in the G$_i$ and C$_2$ sites, for the first time in 151Eu Mössbauer spectroscopy. The degree of covalency and the electric field gradient of the 2 sites has been compared. The occupancy, by the lanthanide ion, of the more and less symmetric sites in the cubic structure of Y$_{1.8}$Eu$_{0.2}$O$_3$ has been investigated and discussed.

Key words: Europium; Yttrium; Oxides; Nanocrystals; 151Eu Mössbauer Spectroscopy.