A Neutron and X-ray Diffraction Study of the Structure of Nd Phosphate Glasses

Uwe Hoppe, Heike Ebendorff-Heidepriema, Jörg Neuefeindb, and Daniel T. Bowronc

Universität Rostock, Fachbereich Physik, Universit"atsplatz 3, D-18051 Rostock
a Friedrich-Schiller-Universität Jena, Otto-Schott-Institut, Chemisch-Geowissenschaftliche Fakultät, Fraunhoferstr. 6, D-07743 Jena
b Hamburger Synchrotronstrahlungslabor HASYLAB am Deutschen Elektronen-Synchrotron DESY, Notkestr. 85, D-22607 Hamburg
c ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX, UK

Reprint requests to Dr. U. H.; E-mail: hoppe@physik1.uni-rostock.de

Diffraction experiments were performed on two (Nd\textsubscript{2}O\textsubscript{3})\textsubscript{x}(P\textsubscript{2}O\textsubscript{5})\textsubscript{1−x} glasses for studying the environmental order of the Nd3+ cations. In case of the metaphosphate glass (\(x = 0.25\)) a combination of X-ray and neutron diffraction data was used to separate the Nd-O and O-O first neighbor peaks. An Nd-O coordination number of 6.6±0.3 and a mean Nd-O distance of (0.239±0.001) nm were determined. In the ultraphosphate glass studied (\(x = 0.20\)) these values increase to 6.9±0.3 and (0.240±0.001) nm where the Nd-O coordination number is equal to the number of terminal oxygen atoms (O\textsubscript{T}) which are available for coordination of each Nd3+ cation. This indicates the formation of NdO\textsubscript{n} polyhedra not sharing any O atom where also all O\textsubscript{T}'s are in Nd-O\textsubscript{T}-P positions. In the metaphosphate glass the NdO\textsubscript{n} polyhedra have to share some O\textsubscript{T} sites.

\textbf{Key words:} Neutron Scattering; X-ray Scattering; Short-range Order; Phosphate Glasses.