A Neutron and X-ray Diffraction Study of the Structure of Nd Phosphate Glasses

Uwe Hoppe, Heike Ebendorff-Heidepriem^a, Jörg Neuefeind^b, and Daniel T. Bowron^c

Universität Rostock, Fachbereich Physik, Universitätsplatz 3, D-18051 Rostock

^a Friedrich-Schiller-Universität Jena, Otto-Schott-Institut, Chemisch-Geowissenschaftliche Fakultät, Fraunhoferstr. 6, D-07743 Jena

b Hamburger Synchrotronstrahlungslabor HASYLAB am Deutschen Elektronen-Synchrotron DESY, Notkestr. 85, D-22607 Hamburg

^c ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX, UK Reprint requests to Dr. U. H.; E-mail: hoppe@physik1.uni-rostock.de

metaphosphate glass the NdO_n polyhedra have to share some O_T sites.

Z. Naturforsch. **56 a,** 237–243 (2001); received January 8, 2001

Diffraction experiments were performed on two $(Nd_2O_3)_x(P_2O_5)_{1-x}$ glasses for studying the environmental order of the Nd^{3+} cations. In case of the metaphosphate glass (x = 0.25) a combination of X-ray and neutron diffraction data was used to separate the Nd-O and O-O first neighbor peaks. An Nd-O coordination number of 6.6 ± 0.3 and a mean Nd-O distance of (0.239 ± 0.001) nm were determined. In the ultraphosphate glass studied (x = 0.20) these values increase to 6.9 ± 0.3 and (0.240 ± 0.001) nm where the Nd-O coordination number is equal to the number of terminal oxygen atoms (O_T) which are available for coordination of each Nd^{3+} cation. This indicates the formation of NdO_T polyhedra not sharing any O atom where also all O_T 's are in Nd-O_T-P positions. In the

Key words: Neutron Scattering; X-ray Scattering; Short-range Order; Phosphate Glasses.