Sending Signals to Space-Like Separated Regions

Y. Aharonov^{a,b} and L. Vaidman^{a,c}

^a School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel

^b Physics Department, University of South Carolina, Columbia, South Carolina 29208, USA

^c Centre for Quantum Computation, Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, England

Reprint requests to Prof. L. V.; E-mail: vaidman@post.tau.ac.il

Z. Naturforsch. 56 a, 20-26 (2001); received February 8, 2001

Presented at the 3rd Workshop on Mysteries, Puzzles and Paradoxes in Quantum Mechanics, Gargnano, Italy, September 17 - 23, 2000.

Two recent works suggest a possibility of sending signals to a space-like separated region, contrary to the spirit of special relativity. In the first work (J. Grunhaus, S. Popescu, and D. Rohrlich, Phys. Rev. A **53**, 3781 (1996)) it has been shown that sending signals to a particular union of space-like separated regions cannot cause causality paradoxes. Another work (Y. Aharonov and L. Vaidman, Phys. Rev. A **61**, 052108 (2000)) showed that the relative phase of the quantum superposition of a particle at two separate locations can be measured locally. Together with the possibility of changing the relative phase in a nonlocal way using the potential effect we, apparently, have a method of sending signals to space-like separated regions. These arguments are critically analyzed in this paper.

Key words: Superluminal Signaling; Quantum Nonlocality; Quantum Paradoxes.