Estimating and Approximating the Total π-Electron Energy of Benzenoid Hydrocarbons

I. Gutman, J. H. Koolena, V. Moultonb, M. Paracc, T. Soldatović, and D. Vidović

Faculty of Science, University of Kragujevac, P. O. Box 60, YU-34000 Kragujevac, Yugoslavia

a FSPM-Strukturbildungsprozesse, University of Bielefeld, D-33501 Bielefeld, Germany

b Physics and Mathematics Department (FMI), Mid Sweden University, Sundsvall, S-85170, Sweden

c Faculty of Physical Chemistry, University of Belgrade, YU-11001 Beograd, Yugoslavia

Reprint requests to Prof. I. G.; Fax: +381 34 335040; E-mail: gutman@knez.uis.kg.ac.yu

Z. Naturforsch. 55 a, 507–512 (2000); received January 27, 2000

Lower and upper bounds as well as approximate formulas for the total π-electron energy (E) of benzenoid hydrocarbons are deduced, depending only on the number of carbon atoms (n) and number of carbon-carbon bonds (m). These are better than the several previously known (n, m)-type estimates and approximations for E.

Key words: Total π-Electron Energy; Benzenoid Hydrocarbons.