Low Frequency NQR using Double Contact Cross-relaxation

David Stephenson and John A. S. Smith
Chemistry Department, Faculty of Agriculture and Natural Sciences, University of the West Indies, St. Augustine, Trinidad and Tobago
Chemistry Department, King’s College, Strand, London, U.K.
Reprint requests to Dr. D. St.; Fax: 868 663 9686.

Z. Naturforsch. 55 a, 37–40 (2000); received September 11, 1999


A cross-relaxation technique is described which involves two spin contacts per double resonance cycle. The result is an improvement in signal to noise ratio particularly at low frequencies. Experimental spectra and analyses are presented: \(^{14}\)N in ammonium sulphate showing that the technique gives essentially the same information as previous studies; \(^{14}\)N in ammonium dichromate determining \(\frac{e^2 Qq}{\hbar}\) as (76±3) kHz and \(\eta = 0.84\pm.04\); \(^7\)Li in lithium acetylacetonate for which the spectrum (corrected for Zeeman distortion) yields \(\frac{e^2 Qq}{\hbar} = (152 \pm 5)\) kHz and \(\eta = .5 \pm .2\). Calculated spectra are presented to demonstrate the \(\eta\) dependence of the line shapes for \(^7\)Li.

Key words: NQR; \(^{14}\)N; \(^7\)Li; Low Frequency; Double Resonance.