Isolated versus Condensed Anion Structure V: X-ray Structure Analysis and 81Br NQR of t-butylammonium tribromocadmate(II)-1/2 water, i-propylammonium tribromocadmate(II), and tris-trimethylammonium heptabromodicadmate(II)

Hideta Ishihara, Keizo Horiuchi, Shi-qi Dou, Thorsten M. Gesing, J.-Christian Buhl, Helmut Paulus, Ingrid Svoboda, and Hartmut Fuess

Faculty of Culture and Education, Saga University, Saga 840-8502, Japan
Faculty of Science, University of the Ryukyus, Okinawa 903-0213, Japan
Institut für Mineralogie, Universität Hannover, Welfengarten 1, 30167 Hannover
Materials Science, University of Technology, Petersenstraße 23, 64287 Darmstadt

Reprint requests to Prof. H. I.; E-mail: isiharah@cc.saga-u.ac.jp

Z. Naturforsch. 54a, 628–636 (1999); received September 6, 1999

The crystal structures of the condensed bromocadmate anions with chains built of $[\text{CdBr}_3]$ were determined by X-ray structure analysis at 300 K. In addition, the temperature dependence of the 81Br NQR frequencies was observed. $[(t-C_4H_9NH_3)\text{CdBr}_3]_2\text{H}_2\text{O}$ (1) crystallizes with a double Br bridged chain (monoclinic, $P2_1/c$, $Z = 4$, $a = 1963.4(8)$ pm, $b = 887.7(4)$ pm, and $c = 1432.1(6)$ pm, and $\beta = 110.66(2)^\circ$). Six 81Br NQR lines are observed at temperatures between 77 and 330 K. $((i-C_3H_7NH_3)\text{CdBr}_3$ (2) crystallizes with a triple Br bridged chain (orthorhombic, Pbc_a, $Z = 8$, $a = 1975.4(6)$ pm, $b = 1415.8(4)$ pm, and $c = 690.1(2)$ pm). (2) shows three 81Br NQR lines at temperatures between 77 and 193 K. A phase transition occurs at 224 K. The structure of $[(\text{CH}_3)_3\text{NH}_3\text{Cd}_2\text{Br}_7$ (3) was redetermined. (3) consists of a triple Br bridged chain and a discrete $[\text{CdBr}_4]$ tetrahedron (hexagonal, $P6_3mc$, $Z = 8$, $a = 1483.5(2)$ pm, and $c = 685.7(5)$ pm). The structure of (3) is identical to the one reported by Daoud, Perret, and Dusausoy, Acta Crystallogr., B35, 2718 (1979). Three 81Br NQR lines are observed at temperatures between 77 and 243 K.