Dynamic Solvent Effects in the Degenerate Isomerization of a Hexafluoroacetone Anil Studied by High-Pressure 19F NMR

Yasushi Ohga, Tsutomu Asano, Norbert Kargera, Thomas Grossa, and Hans-Dietrich Lüdemanna

Department of Applied Chemistry, Faculty of Engineering, Oita University, Oita 870-1192, Japan

a Institut für Biophysik und physikalische Biochemie, Universität Regensburg, 93040 Regensburg

Reprint requests to Prof. T. A.; Fax: 81 97 554 7943 or Prof. H.-D. L.; Fax: 0941 943 2479.

Z. Naturforsch. 54 a, 417–421 (1999); received April 19, 1999

The rate of the degenerate isomerization of N-hexafluoroisopropylidene-N',N'-dimethyl-p-phenylenediamine was measured by high-pressure 19F NMR spectroscopy in a viscous hydrocarbon, 2,4-dicyclohexyl-2-methylpentane. Pressure-induced retardations that cannot be rationalized within the framework of the transition state theory (TST) were observed, and it was concluded that the reaction was cast into the TST-invalid nonequilibrium conditions by high pressure.

Key words: High-pressure 19F NMR; High-pressure Kinetics; Hexafluoroacetone Anil; Degenerate Isomerization; Dynamic Solvent Effect.