Foreign Gas Broadening Studies of the $J' \leftarrow J = 1 \leftarrow 0$ Rotational Line of CO by Frequency and Time Domain Techniques

N. Nissen, J. Doosea, A. Guarnieria, H. Mäder, V. N. Markovb, G. Yu. Golubyatnikovb, I. I. Leonovb, V. N. Shaninb, and A. F. Krupnovb

Institut für Physikalische Chemie der Universität Kiel, Olshausenstr. 40, D-24098 Kiel

a Technische Fakultät der Universität Kiel, Lehrstuhl für Hochfrequenztechnik, Kaiserstr. 2, D-24143 Kiel

b Applied Physics Institute, Russian Academy of Science, Uljanova Street 46, 603 600 Nizhny Novgorod, Russia

Z. Naturforsch. 54 a, 218–224 (1999); received December 14, 1998

The collisional broadening of the $J' \leftarrow J = 1 \leftarrow 0$ rotational line of carbon monoxide by the buffer gases He, Ne, Ar, Kr, CO, N$_2$, O$_2$, and air has been studied at room temperature. Two different experimental techniques in time- and frequency-domain, respectively, were used. The obtained data are in good agreement. Time-domain investigations on the temperature dependence of the foreign gas broadening parameters are also presented.

Key words: CO; Line Broadening; Buffer Gases; Temperature Dependence.

Reprint requests to Prof. H. Mäder. Fax: +49 431 8801416. E-mail: maeder@phc.uni-kiel.de