Resistivity and Carrier Mobility of the SmBa$_2$Cu$_3$O$_{6+x}$ Superconductor with Different Oxygen Doping Levels

G. Spinolo, P. Ghigna, G. Chiodelli, M. Ferrettia, and G. Flor

Dipartimento di Chimica fisica, INSTM, and C.S.T.E./CNR Università di Pavia,
Viale Taramelli 16, I-27100 Pavia
a Dipartimento di Chimica e Chimica Industriale and INFM, Università di Genova,
Via Dodecaneso 31, I-14146 Genova

Reprint requests to Prof. Giorgio Spinolo; Fax: 0382-507575.

Z. Naturforsch. 54a, 95–100 (1999); received December 21, 1998

DC conductivity measurements between 15 and 300 K are reported for SmBa$_2$Cu$_3$O$_{6+x}$ samples with different oxygen doping amounts (x) produced by annealing under appropriate high temperature and oxygen pressure conditions and quenching.

Samples with $x \geq 0.5$ are superconductors: $T_c \sim 60$ K at $x = 0.7$, $T_c > 80$ K at $x = 0.9$. The transition from superconduction to non-superconduction corresponds to the tetragonal to orthorhombic structural transition and to the transition from semiconducting to metallic temperature dependence of the resistivity.

Oxygen doping causes a sudden increase of hole mobility near $x = 0.5$. Below this threshold, the behavior of the carrier mobility is in agreement with an Anderson localization.